RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 1997, Volume 9, Issue 1, Pages 30–42 (Mi dm453)  

A branching process with migration in a random environment

E. E. D'yakonova


Abstract: We study a Galton–Watson branching process $Ż_n\}_{n=0}^\infty$ with migration in a random environment which is specified by a stationary Markov chain $\{\eta_n\}_{n=0}^\infty$ with finite state space. Let $f_{\eta_n}(z)$ be the offspring generating function of each particle of the $n$th generation, $M=\lim_{n\to\infty}\mathsf E\log f_{\eta_n}'(1)$.
It is proved that the stationary distribution of the properly normalized number of particles in the process $Ż_n\}_{n=0}^\infty$ converges to the uniform distribution on the interval $[0,1]$ as $M\to 1$.
The work was supported by the Russian Foundation for Basic Research, grant 96–01–00338 and INTAS–RFBR 95–0099.

DOI: https://doi.org/10.4213/dm453

Full text: PDF file (880 kB)

English version:
Discrete Mathematics and Applications, 1997, 7:1, 33–45

Bibliographic databases:

UDC: 519.2
Received: 14.12.1995

Citation: E. E. D'yakonova, “A branching process with migration in a random environment”, Diskr. Mat., 9:1 (1997), 30–42; Discrete Math. Appl., 7:1 (1997), 33–45

Citation in format AMSBIB
\Bibitem{Dya97}
\by E.~E.~D'yakonova
\paper A branching process with migration in a random environment
\jour Diskr. Mat.
\yr 1997
\vol 9
\issue 1
\pages 30--42
\mathnet{http://mi.mathnet.ru/dm453}
\crossref{https://doi.org/10.4213/dm453}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1454177}
\zmath{https://zbmath.org/?q=an:0891.60083}
\transl
\jour Discrete Math. Appl.
\yr 1997
\vol 7
\issue 1
\pages 33--45


Linking options:
  • http://mi.mathnet.ru/eng/dm453
  • https://doi.org/10.4213/dm453
  • http://mi.mathnet.ru/eng/dm/v9/i1/p30

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:214
    Full text:101
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020