RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 1995, Volume 7, Issue 1, Pages 3–18 (Mi dm569)  

This article is cited in 4 scientific papers (total in 4 papers)

Combinatorial problems of vector optimization

V. A. Emelichev, M. K. Kravtsov


Full text: PDF file (1598 kB)

English version:
Discrete Mathematics and Applications, 1995, 5:2, 93–106

Bibliographic databases:
UDC: 519.1
Received: 02.03.1993

Citation: V. A. Emelichev, M. K. Kravtsov, “Combinatorial problems of vector optimization”, Diskr. Mat., 7:1 (1995), 3–18; Discrete Math. Appl., 5:2 (1995), 93–106

Citation in format AMSBIB
\Bibitem{EmeKra95}
\by V.~A.~Emelichev, M.~K.~Kravtsov
\paper Combinatorial problems of vector optimization
\jour Diskr. Mat.
\yr 1995
\vol 7
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/dm569}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1331928}
\zmath{https://zbmath.org/?q=an:0839.90095}
\transl
\jour Discrete Math. Appl.
\yr 1995
\vol 5
\issue 2
\pages 93--106


Linking options:
  • http://mi.mathnet.ru/eng/dm569
  • http://mi.mathnet.ru/eng/dm/v7/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. K. Kravtsov, O. A. Yanushkevich, “Solvability of the vector problem by the linear criteria convolution algorithm”, Math. Notes, 62:4 (1997), 420–425  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. A. Emelichev, Yu. v. Stepanishina, “Quasistability of a Vector Trajectory Majority Optimization Problem”, Math. Notes, 72:1 (2002), 34–42  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. A. Emelichev, K. G. Kuz'min, A. M. Leonovich, “On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN”, Russian Math. (Iz. VUZ), 48:12 (2004), 15–25  mathnet  mathscinet
    4. E. E. Gurevskii, V. A. Emelichev, “On five types of stability of the lexicographic variant of the combinatorial bottleneck problem”, Discrete Math. Appl., 19:4 (2009), 337–348  mathnet  crossref  crossref  mathscinet  elib
  • Дискретная математика
    Number of views:
    This page:447
    Full text:193
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020