|
Binomial moments and exponential generating functions
M. N. Rokhlin
Abstract:
A connection is established between a sequence of binomial moments of random vectors and sequences of their characteristic functions or exponential generating functions. The asymptotics of these functions is found (under certain conditions). As a result of this, the properties of binomial moments are described which determine the limit distribution of the initial sequence. The results are applied to studying the distribution of the number of isolated trees in growing random graphs.
Full text:
PDF file (1611 kB)
Bibliographic databases:
UDC:
519.12 Received: 11.04.1990
Citation:
M. N. Rokhlin, “Binomial moments and exponential generating functions”, Diskr. Mat., 3:1 (1991), 114–132
Citation in format AMSBIB
\Bibitem{Rok91}
\by M.~N.~Rokhlin
\paper Binomial moments and exponential generating functions
\jour Diskr. Mat.
\yr 1991
\vol 3
\issue 1
\pages 114--132
\mathnet{http://mi.mathnet.ru/dm781}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1112294}
\zmath{https://zbmath.org/?q=an:0733.60018}
Linking options:
http://mi.mathnet.ru/eng/dm781 http://mi.mathnet.ru/eng/dm/v3/i1/p114
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 377 | Full text: | 148 | First page: | 1 |
|