RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2007, Volume 19, Issue 4, Pages 3–22 (Mi dm974)  

This article is cited in 1 scientific paper (total in 1 paper)

A multivariate Poisson theorem for the number of solutions close to given vectors of a system of random linear equations

V. A. Kopyttsev


Abstract: We consider the number $(\xi(A,b\mid z)$ of solutions of a system of random linear equations $Ax=b$ over a finite field $K$ which belong to the set $X_r(z)$ of the vectors differing from a given vector $z$ in a given number $r$ of coordinates (or in at most a given number of coordinates). We give conditions under which, as the number of unknowns, the number of equations, and the number of noncoinciding coordinates tend to infinity, the limit distribution of the vector $(\xi(A,b\mid z^{(1)}),…,\xi(A,b\mid z^{(k)}))$ (or of the vector obtained from this vector by normalisation or by shifting some components by one) is the $k$-variate Poisson law. As corollaries we get limit distributions of the variable $(\xi(A,b\mid z^{(1)},…,z^{(k)}))$ equal to the number of solutions of the system belonging to the union of the sets $X_r(z^{(s)})$, $s=1,…,k$. This research continues a series of the author's and V. G. Mikhailov's studies.

DOI: https://doi.org/10.4213/dm974

Full text: PDF file (171 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2007, 17:6, 567–586

Bibliographic databases:

UDC: 519.2
Received: 01.09.2006
Revised: 21.11.2006

Citation: V. A. Kopyttsev, “A multivariate Poisson theorem for the number of solutions close to given vectors of a system of random linear equations”, Diskr. Mat., 19:4 (2007), 3–22; Discrete Math. Appl., 17:6 (2007), 567–586

Citation in format AMSBIB
\Bibitem{Kop07}
\by V.~A.~Kopyttsev
\paper A multivariate Poisson theorem for the number of solutions close to given vectors of a~system of random linear equations
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 4
\pages 3--22
\mathnet{http://mi.mathnet.ru/dm974}
\crossref{https://doi.org/10.4213/dm974}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2392693}
\zmath{https://zbmath.org/?q=an:05233564}
\elib{https://elibrary.ru/item.asp?id=9917185}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 6
\pages 567--586
\crossref{https://doi.org/10.1515/dma.2007.043}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37049023498}


Linking options:
  • http://mi.mathnet.ru/eng/dm974
  • https://doi.org/10.4213/dm974
  • http://mi.mathnet.ru/eng/dm/v19/i4/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Kopyttsev, “Mnogomernaya teorema Puassona dlya chisel reshenii sluchainykh vklyuchenii, blizkikh k zadannym vektoram”, Matem. vopr. kriptogr., 7:4 (2016), 67–80  mathnet  crossref  mathscinet  elib
  • Дискретная математика
    Number of views:
    This page:300
    Full text:99
    References:41
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020