RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2008, Volume 20, Issue 1, Pages 25–37 (Mi dm986)  

This article is cited in 6 scientific papers (total in 6 papers)

Random permutations with cycle lengths in a given finite set

A. N. Timashev


Abstract: We consider the class of all permutations of degree $n$ whose cycle lengths are elements of a fixed finite set $A\subset\mathbf N$ such that $\operatorname{card}A\ge2$ and $\operatorname{gcd}\{k\mid k\in A\}=1$. Under the assumption that the permutation $X$ is equiprobably chosen from this class, we obtain a multidimensional local normal theorem for the joint distribution of the numbers of cycles of given sizes in this permutation.
The obtained results are utilised and sharpened in the case where $X$ is an equiprobably chosen solution of the equation $X^r=e$, where $e$ is an identity permutation of degree $n$, $r\ge2$ is a fixed positive integer.

DOI: https://doi.org/10.4213/dm986

Full text: PDF file (154 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2008, 18:1, 25–39

Bibliographic databases:

UDC: 519.2
Received: 12.09.2005
Revised: 14.02.2007

Citation: A. N. Timashev, “Random permutations with cycle lengths in a given finite set”, Diskr. Mat., 20:1 (2008), 25–37; Discrete Math. Appl., 18:1 (2008), 25–39

Citation in format AMSBIB
\Bibitem{Tim08}
\by A.~N.~Timashev
\paper Random permutations with cycle lengths in a~given finite set
\jour Diskr. Mat.
\yr 2008
\vol 20
\issue 1
\pages 25--37
\mathnet{http://mi.mathnet.ru/dm986}
\crossref{https://doi.org/10.4213/dm986}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2420494}
\elib{http://elibrary.ru/item.asp?id=20730226}
\transl
\jour Discrete Math. Appl.
\yr 2008
\vol 18
\issue 1
\pages 25--39
\crossref{https://doi.org/10.1515/DMA.2008.002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-64549089562}


Linking options:
  • http://mi.mathnet.ru/eng/dm986
  • https://doi.org/10.4213/dm986
  • http://mi.mathnet.ru/eng/dm/v20/i1/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Lugo M., “Profiles of permutaions”, Electron. J. Combin., 16:1 (2009), Research Paper 99, 20 pp.  mathscinet  zmath  isi
    2. A. L. Yakymiv, “A limit theorem for the logarithm of the order of a random $A$-permutation”, Discrete Math. Appl., 20:3 (2010), 247–275  mathnet  crossref  crossref  mathscinet  zmath  elib  elib
    3. Betz V., Ueltschi D., Velenik Y., “Random permutations with cycle weights”, Ann. Appl. Probab., 21:1 (2011), 312–331  crossref  mathscinet  zmath  isi  scopus
    4. A. N. Timashev, “Random permutations with prime lengths of cycles”, Theory Probab. Appl., 61:2 (2017), 309–320  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Manstavicius E., Petuchovas R., “Local Probabilities For Random Permutations Without Long Cycles”, Electron. J. Comb., 23:1 (2016), P1.58  mathscinet  zmath  isi
    6. Elboim D., Peled R., “Limit Distributions For Euclidean Random Permutations”, Commun. Math. Phys., 369:2 (2019), 457–522  crossref  isi
  • Дискретная математика
    Number of views:
    This page:370
    Full text:138
    References:54
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020