RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevost. Mat. Zh., 2003, Volume 4, Number 2, Pages 167–181 (Mi dvmg157)  

On I. P. Mityuk's reduced modulus

N. V. Eyrikh

The Birobidzhan teacher training college

Abstract: We introduce the reduced modulus of an arbitrary open set with respect to several points of the set and some boundary arcs. This generalizes the reduced modulus introduced by I. P. Mityuk in 1964. We study the basic properties of this modulus — its behavior under extension, conformal mapping and the composition principles. As an application, the theorems on non-overlapping domains and the covering theorems under conformal mapping have been generalized.

Full text: PDF file (261 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517.54
MSC: Primary 31A15; Secondary 30C85
Received: 12.10.2003

Citation: N. V. Eyrikh, “On I. P. Mityuk's reduced modulus”, Dal'nevost. Mat. Zh., 4:2 (2003), 167–181

Citation in format AMSBIB
\Bibitem{Eyr03}
\by N.~V.~Eyrikh
\paper On I.\,P.~Mityuk's reduced modulus
\jour Dal'nevost. Mat. Zh.
\yr 2003
\vol 4
\issue 2
\pages 167--181
\mathnet{http://mi.mathnet.ru/dvmg157}


Linking options:
  • http://mi.mathnet.ru/eng/dvmg157
  • http://mi.mathnet.ru/eng/dvmg/v4/i2/p167

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дальневосточный математический журнал
    Number of views:
    This page:114
    Full text:33
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019