RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevost. Mat. Zh., 2015, Volume 15, Number 2, Pages 277–288 (Mi dvmg315)  

This article is cited in 1 scientific paper (total in 1 paper)

Simplicial 2-spheres obtained from non-singular complete fans

Yu. Suyama

Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 JAPAN

Abstract: We prove that a simplicial 2-sphere satisfying a certain condition is the underlying simplicial complex of a 3-dimensional non-singular complete fan. In particular, this implies that any simplicial 2-sphere with $\leq 18$ vertices is the underlying simplicial complex of such a fan.

Key words: triangulation, fan, toric topology

Full text: PDF file (513 kB)
References: PDF file   HTML file

Document Type: Article
MSC: Primary 52B05; Secondary 14M25
Received: 30.10.2014
Language: English

Citation: Yu. Suyama, “Simplicial 2-spheres obtained from non-singular complete fans”, Dal'nevost. Mat. Zh., 15:2 (2015), 277–288

Citation in format AMSBIB
\Bibitem{Suy15}
\by Yu.~Suyama
\paper Simplicial 2-spheres obtained from non-singular complete fans
\jour Dal'nevost. Mat. Zh.
\yr 2015
\vol 15
\issue 2
\pages 277--288
\mathnet{http://mi.mathnet.ru/dvmg315}
\elib{http://elibrary.ru/item.asp?id=25058101}


Linking options:
  • http://mi.mathnet.ru/eng/dvmg315
  • http://mi.mathnet.ru/eng/dvmg/v15/i2/p277

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017), 199–256  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Дальневосточный математический журнал
    Number of views:
    This page:88
    Full text:23
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019