RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Math. J., 2013, Volume 4, Number 1, Pages 21–45 (Mi emj112)  

This article is cited in 27 scientific papers (total in 27 papers)

Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II

V. I. Burenkovab

a Cardiff School of Mathematics, Cardiff University, Cardiff, UK
b Faculty of Mechanics and Mathematics, L. N. Gumilyov Eurasian National University, Astana, Kazakhstan

Abstract: The survey is aimed at providing detailed information about recent results in the problem of the boundedness in general Morrey-type spaces of various important operators of real analysis, namely of the maximal operator, fractional maximal operator, Riesz potential, singular integral operator, Hardy operator. The main focus is on the results which contain, for a certain range of the numerical parameters, necessary and sufficient conditions on the functional parameters characterizing general Morrey-type spaces, ensuring the boundedness of the aforementioned operators from one general Morrey-type space to another one. The major part of the survey is dedicated to the results obtained by the author jointly with his co-authores A. Gogatishvili, M. L. Goldman, D. K. Darbayeva, H. V. Guliyev, V. S. Guliyev, P. Jain, R. Mustafaev, E. D. Nursultanov, R. Oinarov, A. Serbetci, T. V. Tararykova. In Part I of the survey under discussion were the definition and basic properties of the local and global general Morrey-type spaces, embedding theorems, and the boundedness properties of the maximal operator. Part II of the survey contains discussion of boundedness properties of the fractional maximal operator, Riesz potential, singular integral operator, Hardy operator. All definitions and notation in Part II are the same as in Part I.

Keywords and phrases: local and global Morrey-type spaces, fractional maximal operator, Riesz potential, singular integral operator, Hardy operator.

Full text: PDF file (582 kB)
References: PDF file   HTML file

Bibliographic databases:

MSC: 42B20, 42B25, 42B35, 46E30, 47B38
Received: 12.12.2012
Language:

Citation: V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45

Citation in format AMSBIB
\Bibitem{Bur13}
\by V.~I.~Burenkov
\paper Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~II
\jour Eurasian Math. J.
\yr 2013
\vol 4
\issue 1
\pages 21--45
\mathnet{http://mi.mathnet.ru/emj112}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3118889}
\zmath{https://zbmath.org/?q=an:1277.42001}


Linking options:
  • http://mi.mathnet.ru/eng/emj112
  • http://mi.mathnet.ru/eng/emj/v4/i1/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. Akbulut, V. S. Guliev, Sh. A. Muradova, “On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 7–20  mathnet  mathscinet  zmath
    2. V. I. Burenkov, D. K. Darbayeva, E. D. Nursultanov, “Description of interpolation spaces for general local Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 46–53  mathnet  mathscinet  zmath
    3. A. Gogatishvili, R. Ch. Mustafayev, “New characterization of Morrey spaces”, Eurasian Math. J., 4:1 (2013), 54–64  mathnet  mathscinet  zmath
    4. W. Sickel, “Smoothness spaces related to Morrey spaces — a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124  mathnet  mathscinet  zmath
    5. T. V. Tararykova, “Comments on definitions of general local and global Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 125–134  mathnet  mathscinet  zmath
    6. V. I. Burenkov, E. D. Nursultanov, D. K. Chigambayeva, “Description of the interpolation spaces for a pair of local Morrey-type spaces and their generalizations”, Proc. Steklov Inst. Math., 284 (2014), 97–128  mathnet  crossref  crossref  isi  elib  elib
    7. Burenkov V.I. Goldman M.L., “Necessary and Sufficient Conditions For the Boundedness of the Maximal Operator From Lebesgue Spaces To Morrey-Type Spaces”, Math. Inequal. Appl., 17:2 (2014), 401–418  crossref  mathscinet  zmath  isi  elib  scopus
    8. Mustafayev R.Ch. Unver T., “Embeddings Between Weighted Local Morrey-Type Spaces and Weighted Lebesgue Spaces”, J. Math. Inequal., 9:1 (2015), 277–296  crossref  mathscinet  zmath  isi  elib  scopus
    9. A. N. Karapetyants, S. G. Samko, “Mixed Norm Bergman–Morrey-type Spaces on the Unit Disc”, Math. Notes, 100:1 (2016), 38–48  mathnet  crossref  crossref  mathscinet  isi  elib
    10. V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morrey-type spaces”, Proc. Steklov Inst. Math., 293 (2016), 107–126  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    11. E. Nakai, T. Sobukawa, “$B_w^u$-function spaces and their interpolation”, Tokyo J. Math., 39:2 (2016), 483–516  crossref  mathscinet  zmath  isi  scopus
    12. K.-P. Ho, “Hardy-Littlewood-Polya inequalities and Hausdorff operators on block spaces”, Math. Inequal. Appl., 19:2 (2016), 697–707  crossref  mathscinet  zmath  isi  scopus
    13. N. A. Bokayev, V. I. Burenkov, D. T. Matin, “Sufficient conditions for pre-compactness of sets in the generalized Morrey spaces”, Bull. Karaganda Univ-Math., 84:4 (2016), 18–26  isi
    14. V. I. Burenkov, T. V. Tararykova, “Young’s inequality for convolutions in Morrey-type spaces”, Eurasian Math. J., 7:2 (2016), 92–99  mathnet
    15. N. Bokayev, V. Burenkov, D. Matin, “On the pre-compactness of a set in the generalized Morrey spaces”, International conference on analysis and applied mathematics ICAAM 2016, AIP Conf. Proc., 1759, eds. A. Ashyralyev, A. Lukashov, Amer. Inst. Phys., 2016, 020108  crossref  isi  scopus
    16. E. I. Berezhnoi, “A discrete version of local Morrey spaces”, Izv. Math., 81:1 (2017), 1–28  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    17. O. G. Avsyankin, “On the Compactness of Convolution-Type Operators in Morrey Spaces”, Math. Notes, 102:4 (2017), 437–443  mathnet  crossref  crossref  mathscinet  isi  elib
    18. N. Bokayev, V. Burenkov, D. Matin, “Sufficient conditions for the pre-compactness of sets in global Morrey-type spaces”, International Conference Functional Analysis in Interdisciplinary Applications FAIA 2017, AIP Conf. Proc., 1880, eds. T. Kalmenov, M. Sadybekov, Amer. Inst. Phys., 2017, UNSP 030001  crossref  isi
    19. N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On precompactness of a set in general local and global Morrey-type spaces”, Eurasian Math. J., 8:3 (2017), 109–115  mathnet  mathscinet
    20. V. I. Burenkov, E. Liflyand, “On the boundedness of Hausdorff operators on Morrey-type spaces”, Eurasian Math. J., 8:2 (2017), 97–104  mathnet  mathscinet
    21. A. Gogatishvili, R. Mustafayev, T. Ünver, “Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces”, Eurasian Math. J., 8:1 (2017), 34–49  mathnet
    22. O. G. Avsyankin, “Compactness of Some Operators of Convolution Type in Generalized Morrey Spaces”, Math. Notes, 104:3 (2018), 331–338  mathnet  crossref  crossref  isi  elib
    23. M. Ruzhansky, D. Suragan, N. Yessirkegenov, “Hardy-Littlewood, Bessel-Riesz, and fractional integral operators in anisotropic Morrey and Campanato spaces”, Fract. Calc. Appl. Anal., 21:3 (2018), 577–612  crossref  mathscinet  isi  scopus
    24. N. Bokayev, D. Matin, Zh. Baituyakova, “A sufficient condition for compactness of the commutators of Riesz potential on global Morrey-type space”, International Conference on Analysis and Applied Mathematics (ICAAM 2018), AIP Conf. Proc., 1997, eds. A. Ashyralyev, A. Lukashov, M. Sadybekov, Amer. Inst. Phys., 2018, 020008-1  crossref  isi  scopus
    25. E. D. Nursultanov, V. I. Burenkov, D. K. Chigambaeva, “Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces”, Eurasian Math. J., 9:2 (2018), 82–88  mathnet  mathscinet  isi
    26. Z. A. Kasumov, N. R. Ahmedzade, “On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space”, Eurasian Math. J., 9:4 (2018), 9–21  mathnet  crossref
    27. D. T. Matin, Zh. Zh. Baituyakova, A. N. Adilkhanov, B. O. Bostanov, “Sufficient conditions for the precompactness of sets in local Morrey-type spaces”, Bull. Karaganda Univ-Math., 92:4 (2018), 54–63  crossref  isi
  • Eurasian Mathematical Journal
    Number of views:
    This page:381
    Full text:168
    References:84

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019