RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Math. J., 2010, Volume 1, Number 2, Pages 5–16 (Mi emj14)  

This article is cited in 7 scientific papers (total in 7 papers)

Inverse problem for an operator pencil with nonseparated boundary conditions

A. M. Akhtyamova, V. A. Sadovnichyb, Ya. T. Sultanaevc

a Institute of Mechanics, Ufa Scientific Centre, Ufa, Russia
b M. V. Lomonosov Moscow State University, Moscow, Russia
c Bashkir State University, Ufa, Russia

Abstract: In this work an inverse problem of spectral analysis for a quadratic pencil of operators with general nonselfadjoint nonseparated boundary conditions is considered. Uniqueness and duality theorems are proved, an algoritm for solving the problem is presented. Apropriate examples and counterexample are given.

Keywords and phrases: inverse eigenvalue problem, nonseparated boundary conditions, quadratic pencil.

Full text: PDF file (230 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 34A55, 34B05, 34B07
Received: 05.06.2010
Language: English

Citation: A. M. Akhtyamov, V. A. Sadovnichy, Ya. T. Sultanaev, “Inverse problem for an operator pencil with nonseparated boundary conditions”, Eurasian Math. J., 1:2 (2010), 5–16

Citation in format AMSBIB
\Bibitem{AkhSadSul10}
\by A.~M.~Akhtyamov, V.~A.~Sadovnichy, Ya.~T.~Sultanaev
\paper Inverse problem for an operator pencil with nonseparated boundary conditions
\jour Eurasian Math. J.
\yr 2010
\vol 1
\issue 2
\pages 5--16
\mathnet{http://mi.mathnet.ru/emj14}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2905169}
\zmath{https://zbmath.org/?q=an:1227.34022}


Linking options:
  • http://mi.mathnet.ru/eng/emj14
  • http://mi.mathnet.ru/eng/emj/v1/i2/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M., “Generalizations of the Borg uniqueness theorem to the case of nonseparated boundary conditions”, Dokl. Math., 83:3 (2011), 302–305  crossref  mathscinet  zmath  isi  elib
    2. A. M. Akhtyamov, V. A. Sadovnichy, Ya. T. Sultanaev, “Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions”, Eurasian Math. J., 3:4 (2012), 10–22  mathnet  mathscinet  zmath
    3. Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M., “Generalization of B.M. Levitan and M.G. Gasymov's Solvability Theorems to the Case of Indecomposable Boundary Conditions”, Dokl. Math., 85:2 (2012), 289–291  crossref  mathscinet  zmath  isi  elib
    4. N. P. Bondarenko, “An inverse problem for the matrix quadratic pencil on a finite interval”, Eurasian Math. J., 4:3 (2013), 20–31  mathnet
    5. Manafov M.D., Kablan A., “Inverse Scattering Problems For Energy-Dependent Sturm-Liouville Equations With Point Delta-Interaction and Eigenparameter-Dependent Boundary Condition”, Electron. J. Differ. Equ., 2013, 237  mathscinet  zmath  isi
    6. Manafov Manaf D. Z. H., Kablan A., “Inverse Spectral and Inverse Nodal Problems For Energy-Dependent Sturm-Liouvillee Quations With Delta-Interaction”, Electron. J. Differ. Equ., 2015, 26  mathscinet  zmath  isi  elib
    7. Manafov M.D., “Inverse Spectral Problems For Energy-Dependent Sturm-Liouville Equations With Delta-Interaction”, Filomat, 30:11 (2016), 2935–2946  crossref  mathscinet  zmath  isi  scopus
  • Eurasian Mathematical Journal
    Number of views:
    This page:451
    Full text:235
    References:143

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019