Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Math. J., 2014, Volume 5, Number 4, Pages 6–24 (Mi emj171)  

This article is cited in 6 scientific papers (total in 6 papers)

Schwarz problem for first order elliptic systems in unbounded sectors

M. Akelab, H. Begehrc

a Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Ahsaa, 31982, P.O. Box 380, Saudi Arabia
b Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt
c Mathematical Institute, Free University Berlin, Arnimallee 3, D-14195 Berlin, Germany

Abstract: In this article we deal with a Schwarz-type boundary value problem for both the inhomogeneous Cauchy–Riemann equation and the generalized Beltrami equation on an unbounded sector with angle $\vartheta=\pi/n$, $n\in\mathbb N$. By the method of plane parquetingreflection and the Cauchy–Pompeiu formula for the sector, the Schwarz–Poisson integral formula is obtained. We also investigate the boundary behaviour and the $C^\alpha$-property of a Schwarz-type as well as of a Pompeiu-type operator. The solution to the Schwarz problem of the Cauchy–Riemann equation is explicitly expressed. Sufficient conditions on the coefficients of the generalized Beltrami equation are obtained under which the corresponding system of integral equations is contractive. This proves the existence of a unique solution to the Schwarz problem of the generalized Beltrami equation.

Keywords and phrases: Cauchy–Pompeiu formula, Schwarz–Poisson formula, Cauchy–Riemann equation, generalized Beltrami equation, Schwarz problem, contractive mapping principle.

Full text: PDF file (412 kB)
References: PDF file   HTML file
MSC: 30E25, 30G30, 45E05
Received: 27.03.2014
Language:

Citation: M. Akel, H. Begehr, “Schwarz problem for first order elliptic systems in unbounded sectors”, Eurasian Math. J., 5:4 (2014), 6–24

Citation in format AMSBIB
\Bibitem{AkeBeg14}
\by M.~Akel, H.~Begehr
\paper Schwarz problem for first order elliptic systems in unbounded sectors
\jour Eurasian Math. J.
\yr 2014
\vol 5
\issue 4
\pages 6--24
\mathnet{http://mi.mathnet.ru/emj171}


Linking options:
  • http://mi.mathnet.ru/eng/emj171
  • http://mi.mathnet.ru/eng/emj/v5/i4/p6

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Ku, Y. Wang, F. He, U. Kahler, “Riemann–Hilbert problems for monogenic functions on upper half ball of $\mathbb{R}^4$”, Adv. Appl. Clifford Algebr., 27:3, SI (2017), 2493–2508  crossref  isi
    2. M. Akel, F. Alabbad, “Riemann–Hilbert-type boundary value problems on a half hexagon”, Acta. Math. Sin.-English Ser., 33:9 (2017), 1249–1266  crossref  isi
    3. M. Akel, “Riemann–Hilbert problem for the Cauchy-Riemann operator in lens and lune”, Complex Var. Elliptic Equ., 62:10, SI (2017), 1570–1588  crossref  isi
    4. M. Akel, S. R. Mondal, “Dirichlet problems in lens and lune”, Bull. Malays. Math. Sci. Soc., 41:2 (2018), 1029–1043  crossref  mathscinet  zmath  isi  scopus
    5. M. Akel, M. Aldawsari, “Neumann boundary value problems in fan-shaped domains”, Turk. J. Math., 42:4 (2018), 1571–1589  crossref  mathscinet  zmath  isi  scopus
    6. U. Aksoy, H. Begehr, A. O. Celebi, “Schwarz problem for higher-order complex partial differential equations in the upper half plane”, Math. Nachr., 292:6 (2019), 1183–1193  crossref  mathscinet  zmath  isi  scopus
  • Eurasian Mathematical Journal
    Number of views:
    This page:198
    Full text:85
    References:20

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021