RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Math. J., 2015, Volume 6, Number 4, Pages 19–28 (Mi emj207)  

This article is cited in 5 scientific papers (total in 5 papers)

On conditions of the solvability of nonlocal multi-point boundary value problems for quasi-linear systems of hyperbolic equations

A. T. Assanovaa, A. E. Imanchievb

a Department of Differential Equations, Institute of Mathematics and Mathematical Modeling MES RK, 125 Pushkin St., 050010 Almaty, Kazakhstan
b Faculty of Physics and Mathematics, K. Zhubanov Aktobe Regional State University, 34 A. Moldagulova St., Aktobe 030000, Kazakhstan

Abstract: A nonlocal multi-point boundary value problem for a system of quasi-linear hyperbolic equations is investigated. Based on the results for linear problems coefficient conditions are established ensuring the existence of classical solutions to nonlocal multi-point boundary value problem for a system of quasi-linear hyperbolic equations, and algorithms of finding these solutions are suggested.

Keywords and phrases: nonlocal problem, multi-point condition, quasi-linear hyperbolic equation, solvability.

Funding Agency Grant Number
Ministry of Education and Science of the Republic of Kazakhstan 0822/ΓΦ 4
This work supported by Grant No. 0822/ΓΦ 4 (2015-2017) of the Science Committee of the Ministry of education and Science of the Republic of Kazakhstan.


Full text: PDF file (353 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 35L20, 35L55, 34B08, 35L72
Received: 18.06.2015
Language:

Citation: A. T. Assanova, A. E. Imanchiev, “On conditions of the solvability of nonlocal multi-point boundary value problems for quasi-linear systems of hyperbolic equations”, Eurasian Math. J., 6:4 (2015), 19–28

Citation in format AMSBIB
\Bibitem{AssIma15}
\by A.~T.~Assanova, A.~E.~Imanchiev
\paper On conditions of the solvability of nonlocal multi-point boundary value problems for quasi-linear systems of hyperbolic equations
\jour Eurasian Math. J.
\yr 2015
\vol 6
\issue 4
\pages 19--28
\mathnet{http://mi.mathnet.ru/emj207}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000380173800002}


Linking options:
  • http://mi.mathnet.ru/eng/emj207
  • http://mi.mathnet.ru/eng/emj/v6/i4/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. T. Assanova, A. E. Imanchiev, Zh. M. Kadirbayeva, “On the unique solvability of a multi-point problem for system of the loaded differential equations hyperbolic type”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 2:312 (2017), 12–17  isi
    2. A. T. Assanova, H. A. Ashirbaev, A. P. Sabalakhova, “On the nonlocal problem for a system of the partial integro-differential equations of hyperbolic type”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 4:314 (2017), 11–18  isi
    3. A. T. Assanova, E. A. Bakirova, Zh. M. Kadirbayeva, “Method for solving the periodic problem for an impulsive system of hyperbolic integro-differential equations”, International Conference Functional Analysis in Interdisciplinary Applications FAIA 2017, AIP Conf. Proc., 1880, eds. T. Kalmenov, M. Sadybekov, Amer. Inst. Phys., 2017, UNSP 040004  crossref  isi
    4. A. T. Assanova, Zh. M. Kadirbayeva, “Periodic problem for an impulsive system of the loaded hyperbolic equations”, Electron. J. Differ. Equ., 2018, 72  mathscinet  zmath  isi
    5. A. T. Assanova, B. Zh. Alikhanova, K. Zh. Nazarova, “Well-posedness of a nonlocal problem with integral conditions for third order system of the partial differential equations”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 5:321 (2018), 33–41  crossref  isi
  • Eurasian Mathematical Journal
    Number of views:
    This page:162
    Full text:81
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020