RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Math. J., 2016, Volume 7, Number 3, Pages 89–99 (Mi emj234)  

This article is cited in 6 scientific papers (total in 6 papers)

An analogue of the Hahn–Banach theorem for functionals on abstract convex cones

F. S. Stonyakin

Department of algebra and functional analysis, Crimea Federal University, 4 V. Vernadsky Ave, Simferopol, Russia

Abstract: We prove an analogue of the Hahn–Banach theorem on the extension of a linear functional with a convex estimate for each abstract convex cone with the cancellation law. Also we consider the special class of the so-called strict convex normed cones $(SCNC)$. For such structures we obtain an appropriate analogue of the Hahn–Banach separation theorem. On the base of this result we prove that each $(SCNC)$ is sublinearly, injectively and isometrically embedded in some Banach space.

Keywords and phrases: abstract convex cone, cancellation law, convex functional, Hahn–Banach theorem, convex normed come, Lemma on a support functional, strict convex normed cone, sublinear injective isometric embedding.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation MK-2915.2015.1
This work was supported by grant of the President of Russian Federation for young candidates of sciences, project no. MK-2915.2015.1.


Full text: PDF file (408 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 46A22, 46A20, 46B10
Received: 27.04.2016
Language:

Citation: F. S. Stonyakin, “An analogue of the Hahn–Banach theorem for functionals on abstract convex cones”, Eurasian Math. J., 7:3 (2016), 89–99

Citation in format AMSBIB
\Bibitem{Sto16}
\by F.~S.~Stonyakin
\paper An analogue of the Hahn--Banach theorem for functionals on abstract convex cones
\jour Eurasian Math. J.
\yr 2016
\vol 7
\issue 3
\pages 89--99
\mathnet{http://mi.mathnet.ru/emj234}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3581185}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000391008000007}


Linking options:
  • http://mi.mathnet.ru/eng/emj234
  • http://mi.mathnet.ru/eng/emj/v7/i3/p89

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. S. Stonyakin, “Subdifferential calculus in abstract convex cones”, 2017 Constructive Nonsmooth Analysis and Related Topics, CNSA 2017, Dedicated to the Memory of V.F. Demyanov, ed. L. Polyakova, IEEE, 316–319  isi
    2. I. V. Orlov, “Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone”, Math. Notes, 102:3 (2017), 361–368  mathnet  crossref  crossref  mathscinet  isi  elib
    3. F. S. Stonyakin, “A Sublinear Analog of the Banach–Mazur Theorem in Separable Convex Cones with Norm”, Math. Notes, 104:1 (2018), 111–120  mathnet  crossref  crossref  isi  elib
    4. F. S. Stonyakin, “On Sublinear Analogs of Weak Topologies in Normed Cones”, Math. Notes, 103:5 (2018), 859–864  mathnet  crossref  crossref  isi  elib
    5. I. V. Orlov, “Generalized Hamel basis and basis extension in convex cones and uniquely divisible semigroups”, Eurasian Math. J., 9:1 (2018), 69–82  mathnet
    6. F. S. Stonyakin, “Hahn–Banach type theorems on functional separation for convex ordered normed cones”, Eurasian Math. J., 10:1 (2019), 59–79  mathnet  crossref
  • Eurasian Mathematical Journal
    Number of views:
    This page:434
    Full text:99
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020