RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Math. J., 2017, Volume 8, Number 3, Pages 77–84 (Mi emj268)  

On the number of non-real eigenvalues of the Sturm–Liouville problem

A. Sh. Shukurov

Institute of Mathematics and Mechanics, NAS of Azerbaijan, 9 B.Vahabzade St., Az1141, Baku, Azerbaijan

Abstract: In this paper we consider a spectral problem for the Sturm–Liouville equation with a spectral parameter in a boundary conditions. It is shown that under certain assumptions on the coefficients of boundary conditions, problems of this type cannot have more than two non-real eigenvalues. Note that, in some special cases of boundary conditions, this kind of results have usually been obtained by using the results of the theory of Pontryagin spaces. The aim of this paper is to prove this result in a more general setting. Since the result was fairly predictable and could also be proved by using Pontryagin space methods, the author does not claim the absolute novelty of the obtained result but aims to provide an elementary proof, using only some facts of mathematical analysis and theory of ordinary differential equations, which, probably, will make the proof more accessible to a wide audience, especially to students.

Keywords and phrases: Sturm–Liouville problem, spectral parameter in boundary condition, non-real eigenvalues, Pontryagin space, J-metric.

Funding Agency Grant Number
Science Development Foundation under the President of the Republic of Azerbaijan EIF/GAM-3-2014-6(21)-24/05/1
This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan - Grant N EIF/GAM-3-2014-6(21)-24/05/1.


Full text: PDF file (377 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 34B05, 34B08, 34B09, 34B24 , 47A75, 35P05
Received: 21.06.2016
Revised: 20.10.2016
Language:

Citation: A. Sh. Shukurov, “On the number of non-real eigenvalues of the Sturm–Liouville problem”, Eurasian Math. J., 8:3 (2017), 77–84

Citation in format AMSBIB
\Bibitem{Shu17}
\by A.~Sh.~Shukurov
\paper On the number of non-real eigenvalues of the Sturm--Liouville problem
\jour Eurasian Math. J.
\yr 2017
\vol 8
\issue 3
\pages 77--84
\mathnet{http://mi.mathnet.ru/emj268}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3719797}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000416973500009}


Linking options:
  • http://mi.mathnet.ru/eng/emj268
  • http://mi.mathnet.ru/eng/emj/v8/i3/p77

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Eurasian Mathematical Journal
    Number of views:
    This page:226
    Full text:77
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020