Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Math. J., 2021, Volume 12, Number 2, Pages 10–18 (Mi emj399)  

Modulus of continuity for Bessel type poteniial over Lorentz space

N. H. Alkhalil

S.M. Nikol’skii Mathematical Institute Peoples Friendship University of Russia 6 Miklukho Maklai St, 117198, Moscow, Russia Federation

Abstract: The generalized Bessel potentials are constructed using convolutions of the generalized Bessel–McDonald kernels with functions belonging to a basic rearrangement invariant space. Under assumptions ensuring the embedding of potentials into the space of bounded continuous functions, differential properties of potentials are described by using the $k$-th order modulus of continuity in the uniform norm. In the paper, estimates are given for the $k$-th order modulus of continuity in the uniform norm in the case of the generalized Bessel potentials constructed over the basic weighted Lorentz space.

Keywords and phrases: the generalized Bessel potential, the modulus of continuity of a potential, Lorentz space, rearrangement invariant space.

DOI: https://doi.org/10.32523/2077-9879-2021-12-2-10-18

Full text: PDF file (405 kB)
References: PDF file   HTML file

MSC: 46A30, 42A16
Received: 07.06.2020
Language:

Citation: N. H. Alkhalil, “Modulus of continuity for Bessel type poteniial over Lorentz space”, Eurasian Math. J., 12:2 (2021), 10–18

Citation in format AMSBIB
\Bibitem{Alk21}
\by N.~H.~Alkhalil
\paper Modulus of continuity for Bessel type poteniial over Lorentz space
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 2
\pages 10--18
\mathnet{http://mi.mathnet.ru/emj399}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-2-10-18}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111488124}


Linking options:
  • http://mi.mathnet.ru/eng/emj399
  • http://mi.mathnet.ru/eng/emj/v12/i2/p10

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Eurasian Mathematical Journal
    Number of views:
    This page:40
    Full text:13
    References:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021