Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Math. J., 2021, Volume 12, Number 2, Pages 90–103 (Mi emj407)  

Optimal rearrangement-invariant Banach function range for the Hilbert transform

K. S. Tulenovab

a Department of Mechanics and Mathematics, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
b Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Kazakhstan

Abstract: We describe the optimal rearrangement-invariant Banach function range of the classical Hilbert transform acting on a rearrangement-invariant Banach function space. We also show the existence of such optimal range for the Lorentz and Marcinkiewicz spaces.

Keywords and phrases: rearrangement-invariant Banach function space, Hilbert transform, optimal range.

Funding Agency Grant Number
Ministry of Education and Science of the Republic of Kazakhstan AP08052004
This work was supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan, project no. AP08052004.


DOI: https://doi.org/10.32523/2077-9879-2021-12-2-90-103

Full text: PDF file (480 kB)
References: PDF file   HTML file

MSC: 46E30, 44A15, 47L20, 47C15
Received: 17.04.2020
Language:

Citation: K. S. Tulenov, “Optimal rearrangement-invariant Banach function range for the Hilbert transform”, Eurasian Math. J., 12:2 (2021), 90–103

Citation in format AMSBIB
\Bibitem{Tul21}
\by K.~S.~Tulenov
\paper Optimal rearrangement-invariant Banach function range for the Hilbert transform
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 2
\pages 90--103
\mathnet{http://mi.mathnet.ru/emj407}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-2-90-103}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099218278}


Linking options:
  • http://mi.mathnet.ru/eng/emj407
  • http://mi.mathnet.ru/eng/emj/v12/i2/p90

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Eurasian Mathematical Journal
    Number of views:
    This page:55
    Full text:32

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021