RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Entropy, 2019, Volume 21, Pages 1091–22 (Mi entr1)  

Variational autoencoder reconstruction of complex many-body physics

Ilia A. Luchnikovab, Alexander Ryzhova, Pieter-Jan Stasc, Sergey N. Filippovbde, Henni Ouerdanea

a Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, Skolkovo, 121205 Moscow Region, Russia
b Moscow Institute of Physics and Technology, Institutskii Per. 9, Dolgoprudny, 141700 Moscow Region, Russia
c Department of Applied Physics, Stanford University 348 Via Pueblo Mall, Stanford, CA 94305, USA
d Valiev Institute of Physics and Technology of Russian Academy of Sciences, Nakhimovskii Pr. 34, 117218 Moscow, Russia
e Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina St. 8, 119991 Moscow, Russia

Funding Agency Grant Number
Russian Foundation for Basic Research 18-37-00282
18-37-20073
Skolkovo Institute of Science and Technology Skoltech-MIT
This research was supported by the Russian Foundation for Basic Research grants under the Project No. 18-37-00282 and the Project No. 18-37-20073. This research was also partially supported by the Skoltech NGP Program (Skoltech-MIT joint project).


DOI: https://doi.org/10.3390/e21111091


Bibliographic databases:

ArXiv: 1910.03957
Received: 09.10.2019
Accepted:06.11.2019
Language:

Linking options:
  • http://mi.mathnet.ru/eng/entr1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

  •  
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019