RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 1987, Volume 21, Issue 1, Pages 63–65 (Mi faa1171)  

This article is cited in 9 scientific papers (total in 10 papers)

Brief communications

Some asymptotic formulas for elliptic pseudodifferential operators

M. S. Agranovich


Full text: PDF file (471 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1987, 21:1, 53–56

Bibliographic databases:

UDC: 517.946
Received: 04.06.1986

Citation: M. S. Agranovich, “Some asymptotic formulas for elliptic pseudodifferential operators”, Funktsional. Anal. i Prilozhen., 21:1 (1987), 63–65; Funct. Anal. Appl., 21:1 (1987), 53–56

Citation in format AMSBIB
\Bibitem{Agr87}
\by M.~S.~Agranovich
\paper Some asymptotic formulas for elliptic pseudodifferential operators
\jour Funktsional. Anal. i Prilozhen.
\yr 1987
\vol 21
\issue 1
\pages 63--65
\mathnet{http://mi.mathnet.ru/faa1171}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=888015}
\zmath{https://zbmath.org/?q=an:0631.35074}
\transl
\jour Funct. Anal. Appl.
\yr 1987
\vol 21
\issue 1
\pages 53--56
\crossref{https://doi.org/10.1007/BF01077985}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1987K229500006}


Linking options:
  • http://mi.mathnet.ru/eng/faa1171
  • http://mi.mathnet.ru/eng/faa/v21/i1/p63

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. Kh. Boimatov, A. G. Kostyuchenko, “Spectral asymptotics of nonselfadjoint elliptic systems of differential operators on bounded domains”, Math. USSR-Sb., 71:2 (1992), 517–531  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. K. Kh. Boimatov, A. G. Kostyuchenko, “Spectral asymptotics of non-self-adjoint elliptic systems of differential operators in bounded domains”, Funct. Anal. Appl., 24:1 (1991), 54–57  mathnet  crossref  mathscinet  zmath  isi
    3. K. Kh. Boimatov, A. G. Kostyuchenko, “Spectral asymptotics of polynomial pencils of differential operators on a compact manifold without boundary”, Funct. Anal. Appl., 24:2 (1990), 146–148  mathnet  crossref  mathscinet  zmath  isi
    4. K. Kh. Boimatov, “The spectral asymptotics of pseudodifferential systems elliptic in the sense of Douglis and Nirenberg”, Russian Math. Surveys, 46:5 (1991), 183–184  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. M. S. Agranovich, “On modules of eigenvalues for non-self-adjoint agmon–Douglis–Nirenberg elliptic boundary problems with a parameter”, Funct. Anal. Appl., 26:2 (1992), 116–119  mathnet  crossref  mathscinet  zmath  isi
    6. K. Kh. Boimatov, “Some Spectral Properties of Matrix Differential Operators Far from Being Self-Adjoint”, Funct. Anal. Appl., 29:3 (1995), 191–193  mathnet  crossref  mathscinet  zmath  isi
    7. B. A. Amosov, M. Sh. Birman, M. I. Vishik, L. R. Volevich, I. M. Gel'fand, L. F. Fridlender, M. A. Shubin, “Mikhail Semenovich Agranovich (on his 70th birthday)”, Russian Math. Surveys, 56:4 (2001), 777–784  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. M. G. Gadoev, “Spektralnaya asimptotika nesamosopryazhennykh vyrozhdayuschikhsya ellipticheskikh operatorov s singulyarnymi matrichnymi koeffitsientami na otrezke”, Ufimsk. matem. zhurn., 3:3 (2011), 26–54  mathnet  zmath
    9. M. G. Gadoev, S. A. Iskhokov, “Spectral properties of degenerate elliptic operators with matrix coefficients”, Ufa Math. J., 5:4 (2013), 37–48  mathnet  crossref  elib
    10. Girouard A., Polterovich I., “Spectral Geometry of the Steklov Problem (Survey Article)”, J. Spectr. Theory, 7:2 (2017), 321–359  crossref  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:243
    Full text:91
    References:23
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020