|
This article is cited in 16 scientific papers (total in 16 papers)
Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model
I. M. Krichever
Full text:
PDF file (1622 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 1986, 20:3, 203–214
Bibliographic databases:
UDC:
517.93+513.015.7 Received: 04.10.1985
Citation:
I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funktsional. Anal. i Prilozhen., 20:3 (1986), 42–54; Funct. Anal. Appl., 20:3 (1986), 203–214
Citation in format AMSBIB
\Bibitem{Kri86}
\by I.~M.~Krichever
\paper Spectral theory of finite-zone nonstationary Schr\"odinger operators. A nonstationary Peierls model
\jour Funktsional. Anal. i Prilozhen.
\yr 1986
\vol 20
\issue 3
\pages 42--54
\mathnet{http://mi.mathnet.ru/faa1297}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=868560}
\zmath{https://zbmath.org/?q=an:0637.35060}
\transl
\jour Funct. Anal. Appl.
\yr 1986
\vol 20
\issue 3
\pages 203--214
\crossref{https://doi.org/10.1007/BF01078472}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1986G071500004}
Linking options:
http://mi.mathnet.ru/eng/faa1297 http://mi.mathnet.ru/eng/faa/v20/i3/p42
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
R. A. Sharipov, “Multiplet solutions of the Kadomtsev–Petviashvili equation against a finite-zone background”, Russian Math. Surveys, 42:5 (1987), 177–178
-
Yu. V. Katyshev, V. G. Makhan'kov, R. Myrzakulov, “Vector generalization of a system of equations of interacting high-frequency and low-frequency waves”, Theoret. and Math. Phys., 72:1 (1987), 693–702
-
I. M. Krichever, S. P. Novikov, “Algebras of virasoro type, riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142
-
B. A. Dubrovin, S. M. Natanzon, “Real theta-function solutions of the Kadomtsev–Petviashvili equation”, Math. USSR-Izv., 32:2 (1989), 269–288
-
I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225
-
I. M. Krichever, S. P. Novikov, “Algebras of virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33
-
P. G. Grinevich, “Rapidly decreasing potentials on a background of finite-zone potentials and the $\partial$-problem on Riemann spaces”, Funct. Anal. Appl., 23:4 (1989), 321–322
-
I. M. Krichever, “Two-Dimensional Algebraic-Geometric Operators with Self-Consistent Potentials”, Funct. Anal. Appl., 28:1 (1994), 21–32
-
Eilbeck, JC, “Quasiperiodic and periodic solutions for vector nonlinear Schrodinger equations”, Journal of Mathematical Physics, 41:12 (2000), 8236
-
A. A. Akhmetshin, Yu. S. Vol'vovskii, “The Dynamics of Zeros of Finite-Gap Solutions of the Schrödinger Equation”, Funct. Anal. Appl., 35:4 (2001), 247–256
-
P. G. Grinevich, S. P. Novikov, “Singular finite-gap operators and indefinite metrics”, Russian Math. Surveys, 64:4 (2009), 625–650
-
I. M. Krichever, “Real Normalized Differentials and Arbarello's Conjecture”, Funct. Anal. Appl., 46:2 (2012), 110–120
-
P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107
-
Simonetta Abenda, Petr G. Grinevich, “Real soliton lattices of the Kadomtsev–Petviashvili II equation and desingularization of spectral curves: the $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$ case”, Proc. Steklov Inst. Math., 302 (2018), 1–15
-
A. V. Ilina, I. M. Krichever, N. A. Nekrasov, “Dvumernye periodicheskie operatory Shredingera, integriruemye na «sobstvennom» urovne energii”, Funkts. analiz i ego pril., 53:1 (2019), 31–48
-
S. Grushevsky, I. M. Krichever, Ch. Norton, “Real-normalized differentials: limits on stable curves”, Russian Math. Surveys, 74:2 (2019), 265–324
|
Number of views: |
This page: | 663 | Full text: | 203 | References: | 52 | First page: | 4 |
|