RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2003, Volume 37, Issue 1, Pages 25–37 (Mi faa134)  

This article is cited in 3 scientific papers (total in 3 papers)

Witten Solution for the Gelfand–Dikii Hierarchy

S. M. Natanzonab

a M. V. Lomonosov Moscow State University
b Independent University of Moscow

Abstract: We derive formulas making it possible to calculate the Taylor expansion coefficients of the string solution for the Gelfand–Dikii hierarchy. According to the Witten conjecture, these coefficients coincide with the Mumford–Morita–Miller intersection numbers (correlators) of stable cohomology classes for the moduli space of $n$-spin bundles on Riemann surfaces with punctures.

Keywords: Gelfand–Dikii hierarchy, KP hierarchy, moduli space, Witten conjecture

DOI: https://doi.org/10.4213/faa134

Full text: PDF file (175 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2003, 37:1, 21–31

Bibliographic databases:

UDC: 517.958+512.772.5
Received: 16.04.2001

Citation: S. M. Natanzon, “Witten Solution for the Gelfand–Dikii Hierarchy”, Funktsional. Anal. i Prilozhen., 37:1 (2003), 25–37; Funct. Anal. Appl., 37:1 (2003), 21–31

Citation in format AMSBIB
\Bibitem{Nat03}
\by S.~M.~Natanzon
\paper Witten Solution for the Gelfand--Dikii Hierarchy
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 1
\pages 25--37
\mathnet{http://mi.mathnet.ru/faa134}
\crossref{https://doi.org/10.4213/faa134}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1988007}
\zmath{https://zbmath.org/?q=an:1098.37059}
\elib{http://elibrary.ru/item.asp?id=13436505}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 1
\pages 21--31
\crossref{https://doi.org/10.1023/A:1022919926368}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000182147400003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037245804}


Linking options:
  • http://mi.mathnet.ru/eng/faa134
  • https://doi.org/10.4213/faa134
  • http://mi.mathnet.ru/eng/faa/v37/i1/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Shadrin S.V., “Geometry of meromorphic functions and intersections on moduli spaces of curves”, Int. Math. Res. Not., 2003, no. 38, 2051–2094  crossref  mathscinet  zmath  isi
    2. Natanzon S.M., Zabrodin A.V., “Formal Solutions To the KP Hierarchy”, J. Phys. A-Math. Theor., 49:14 (2016), 145206  crossref  mathscinet  zmath  isi  scopus
    3. Liu K. Vakil R. Xu H., “Formal Pseudodifferential Operators and Witten'S R-Spin Numbers”, J. Reine Angew. Math., 728 (2017), 1–33  crossref  mathscinet  zmath  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:336
    Full text:143
    References:45

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019