RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2003, Volume 37, Issue 1, Pages 73–77 (Mi faa137)  

This article is cited in 13 scientific papers (total in 13 papers)

Brief communications

Homological Dimensions of the Algebra Formed by Entire Functions of Elements of a Nilpotent Lie Algebra

A. A. Dosiev

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences

Abstract: This note deals with homological characteristics of algebras of holomorphic functions of noncommuting variables generated by a finite-dimensional nilpotent Lie algebra $\mathfrak{g}$. It is proved that the embedding $\mathcal{U}(\mathfrak{g})\to\mathcal{O}_{\mathfrak{g}}$ of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of $\mathfrak{g}$ into its Arens–Michael hull $\mathcal{O}_{\mathfrak{g}}$ is an absolute localization in the sense of Taylor provided that $[\mathfrak{g},[\mathfrak{g},\mathfrak{g}]]=0$.

Keywords: Arens–Michael hull, projective homological dimension, nilpotent Lie algebra, localization, Taylor spectrum

DOI: https://doi.org/10.4213/faa137

Full text: PDF file (127 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2003, 37:1, 61–64

Bibliographic databases:

UDC: 517.55+517.986
Received: 23.11.2001

Citation: A. A. Dosiev, “Homological Dimensions of the Algebra Formed by Entire Functions of Elements of a Nilpotent Lie Algebra”, Funktsional. Anal. i Prilozhen., 37:1 (2003), 73–77; Funct. Anal. Appl., 37:1 (2003), 61–64

Citation in format AMSBIB
\Bibitem{Dos03}
\by A.~A.~Dosiev
\paper Homological Dimensions of the Algebra Formed by Entire Functions of Elements of a Nilpotent Lie Algebra
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 1
\pages 73--77
\mathnet{http://mi.mathnet.ru/faa137}
\crossref{https://doi.org/10.4213/faa137}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1988010}
\zmath{https://zbmath.org/?q=an:1029.46065}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 1
\pages 61--64
\crossref{https://doi.org/10.1023/A:1022976011347}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000182147400006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037248586}


Linking options:
  • http://mi.mathnet.ru/eng/faa137
  • https://doi.org/10.4213/faa137
  • http://mi.mathnet.ru/eng/faa/v37/i1/p73

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Dosiev, “Cohomology of Sheaves of Fréchet Algebras and Spectral Theory”, Funct. Anal. Appl., 39:3 (2005), 225–228  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Dosiev, A, “Quasispectra of solvable Lie algebra homomorphisms into Banach algebras”, Studia Mathematica, 174:1 (2006), 13  crossref  mathscinet  zmath  isi  scopus
    3. Pirkovskii, AY, “Arens-Michael enveloping algebras and analytic smash products”, Proceedings of the American Mathematical Society, 134:9 (2006), 2621  crossref  mathscinet  zmath  isi  scopus
    4. Dosiev, A, “Cartan-Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems”, Journal of Functional Analysis, 230:2 (2006), 446  crossref  mathscinet  zmath  isi  scopus
    5. A. A. Dosi, “Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem”, Izv. Math., 73:6 (2009), 1149–1171  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. Dosiev, A, “Local left invertibility for operator tuples and noncommutative localizations”, Journal of K-Theory, 4:1 (2009), 163  crossref  mathscinet  zmath  isi  scopus
    7. Dosi, A, “Fr,chet Sheaves and Taylor Spectrum for Supernilpotent Lie Algebra of Operators”, Mediterranean Journal of Mathematics, 6:2 (2009), 181  crossref  mathscinet  zmath  isi  scopus
    8. A. A. Dosi, “The Taylor spectrum and transversality for a Heisenberg algebra of operators”, Sb. Math., 201:3 (2010), 355–375  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Dosi A., “Formally-radical Functions in Elements of a Nilpotent Lie Algebra and Noncommutative Localizations”, Algebra Colloq, 17, Sp. Iss. 1 (2010), 749–788  crossref  mathscinet  zmath  isi  elib
    10. Dosi A., “Taylor Functional Calculus for Supernilpotent Lie Algebra of Operators”, Journal of Operator Theory, 63:1 (2010), 191–216  mathscinet  zmath  isi
    11. A. Yu. Pirkovskii, “Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras”, Izv. Math., 76:4 (2012), 702–759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. Pirkovskii A.Yu., “Noncommutative Analogues of Stein Spaces of Finite Embedding Dimension”, Algebraic Methods in Functional Analysis: the Victor Shulman Anniversary Volume, Operator Theory Advances and Applications, 233, ed. Todorov I. Turowska L., Birkhauser Verlag Ag, 2014, 135–153  crossref  mathscinet  zmath  isi  scopus
    13. Pirkovskii A.Yu., “Holomorphically Finitely Generated Algebras”, J. Noncommutative Geom., 9:1 (2015), 215–264  crossref  mathscinet  zmath  isi  elib  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:291
    Full text:92
    References:50

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019