RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2003, Volume 37, Issue 2, Pages 16–27 (Mi faa145)  

This article is cited in 22 scientific papers (total in 22 papers)

Mathematical Aspects of Weakly Nonideal Bose and Fermi Gases on a Crystal Base

V. P. Maslov

M. V. Lomonosov Moscow State University, Faculty of Physics

Abstract: We consider mathematical aspects of ideal Bose and Fermi gases on a crystal lattice and give a simple model of superfluidity and superconductivity for nonideal Bose and Fermi gases.

Keywords: thermodynamics, Bose gas, Fermi gas, Schrödinger equation, phase transition, Lifshits potential, metastable state, superfluidity

DOI: https://doi.org/10.4213/faa145

Full text: PDF file (167 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2003, 37:2, 94–102

Bibliographic databases:

UDC: 517.9
Received: 13.03.2003

Citation: V. P. Maslov, “Mathematical Aspects of Weakly Nonideal Bose and Fermi Gases on a Crystal Base”, Funktsional. Anal. i Prilozhen., 37:2 (2003), 16–27; Funct. Anal. Appl., 37:2 (2003), 94–102

Citation in format AMSBIB
\Bibitem{Mas03}
\by V.~P.~Maslov
\paper Mathematical Aspects of Weakly Nonideal Bose and Fermi Gases on a Crystal Base
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 2
\pages 16--27
\mathnet{http://mi.mathnet.ru/faa145}
\crossref{https://doi.org/10.4213/faa145}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1994460}
\zmath{https://zbmath.org/?q=an:1148.82301}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 2
\pages 94--102
\crossref{https://doi.org/10.1023/A:1024452806112}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000184635000003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347757081}


Linking options:
  • http://mi.mathnet.ru/eng/faa145
  • https://doi.org/10.4213/faa145
  • http://mi.mathnet.ru/eng/faa/v37/i2/p16

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. P. Maslov, “On a Model of High-Temperature Superconductivity”, Math. Notes, 73:6 (2003), 889–894  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Maslov V.P., “Axioms of nonlinear averaging in financial mathematics and an analogue of phase transition”, Dokl. Math., 68:3 (2003), 426–429  mathnet  mathscinet  isi
    3. Maslov V.P., “Approximation probabilities, the law of a quasi-stable market, and a phase transition from the “condensate” state”, Dokl. Math., 68:2 (2003), 266–270  mathnet  mathscinet  zmath  isi
    4. Maslov A.V.P., “On a model of high-temperature superconductivity”, Doklady Mathematics, 68:1 (2003), 140–144  mathscinet  zmath  isi
    5. V. P. Maslov, “Zeroth-Order Phase Transitions”, Math. Notes, 76:5 (2004), 697–710  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. V. P. Maslov, “An Exactly Solvable Superfluidity Model and the Phase Transition of the Zeroth Kind (Fountain Effect)”, Theoret. and Math. Phys., 141:3 (2004), 1686–1697  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. Maslov V.P., “Quasistable economics and its relationship to the thermodynamics of superfluids. Default as a zero order phase transition”, Russ. J. Math. Phys., 11:3 (2004), 308–334  mathscinet  zmath  isi
    8. Maslov V.P., “Taking account of repulsion for a model of high-temperature conductivity and superfluidity of a Bose gas on a crystal substrate: Phase transition of zeroth kind”, Dokl. Math., 70:2 (2004), 822–826  mathnet  mathscinet  zmath  isi
    9. Maslov V.P., “An exactly solvable model of low-temperature superconductivity”, Dokl. Math., 70:1 (2004), 648–650  mathnet  mathscinet  zmath  isi
    10. Maslov V.P., “A new exactly solvable model of high-temperature superconductivity”, Russ. J. Math. Phys., 11:2 (2004), 199–208  mathscinet  zmath  isi
    11. Maslov V.P., “Quasistable economics and its relationship to the thermodynamics of superfluids. Default as a zero order phase transition”, Russ. J. Math. Phys., 11:4 (2004), 429–455  mathscinet  zmath  isi
    12. Maslov V.P., “An exactly solvable model of superfluidity”, Dokl. Math., 70:3 (2004), 966–970  mathnet  mathscinet  zmath  isi
    13. Maslov V.P., “On the superfluidity of classical liquid in nanotubes. I. Case of even number of neutrons”, Russ. J. Math. Phys., 14:3 (2007), 304–318  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. V. P. Maslov, “Taking parastatistical corrections to the Bose–Einstein distribution into account in the quantum and classical cases”, Theoret. and Math. Phys., 172:3 (2012), 1289–1299  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    15. Maslov V.P., “Bose Condensate in the D-Dimensional Case, in Particular, for D=2”, Russ. J. Math. Phys., 19:3 (2012), 317–323  crossref  mathscinet  zmath  isi  elib  scopus
    16. Maslov V.P., “A Bose Condensate in the $D$-Dimensional Case, in Particular, for $D=2$ and 1”, Dokl. Math., 86:2 (2012), 700–703  crossref  mathscinet  zmath  isi  elib  elib  scopus
    17. V. P. Maslov, “Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications”, Math. Notes, 94:2 (2013), 231–237  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    18. V. P. Maslov, “On New Ideal (Noninteracting) Gases in Supercritical Thermodynamics”, Math. Notes, 97:1 (2015), 85–99  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    19. Maslov V.P., “Distribution Corresponding To Classical Thermodynamics”, Phys. Wave Phenom., 23:2 (2015), 81–95  crossref  isi  elib  scopus
    20. Maslov V.P., “On Mathematical Investigations Related to the Chernobyl Disaster”, Russ. J. Math. Phys., 25:3 (2018), 309–318  crossref  mathscinet  zmath  isi  scopus
    21. Maslov V.P., “Numeration as a Factor Relating the Quantum and Classical Mechanics of Ideal Gases”, Russ. J. Math. Phys., 25:4 (2018), 525–530  crossref  mathscinet  zmath  isi  scopus
    22. Chetverikov V.M., “The Spatial Distribution of Magnetization in a Ferromagnetic Semiconductor Thin Film”, Mosc. Univ. Phys. Bull., 73:6 (2018), 592–598  crossref  mathscinet  isi  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:548
    Full text:168
    References:53
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020