RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 1983, Volume 17, Issue 3, Pages 69–70 (Mi faa1559)  

This article is cited in 7 scientific papers (total in 7 papers)

Brief communications

Classical Young–Baxter equation for simple Lie algebras

A. A. Belavin, V. G. Drinfeld


Full text: PDF file (152 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1983, 17:3, 220–221

Bibliographic databases:

UDC: 519.4
Received: 23.09.1982

Citation: A. A. Belavin, V. G. Drinfeld, “Classical Young–Baxter equation for simple Lie algebras”, Funktsional. Anal. i Prilozhen., 17:3 (1983), 69–70; Funct. Anal. Appl., 17:3 (1983), 220–221

Citation in format AMSBIB
\Bibitem{BelDri83}
\by A.~A.~Belavin, V.~G.~Drinfeld
\paper Classical Young--Baxter equation for simple Lie algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 1983
\vol 17
\issue 3
\pages 69--70
\mathnet{http://mi.mathnet.ru/faa1559}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=714225}
\zmath{https://zbmath.org/?q=an:0533.22014}
\transl
\jour Funct. Anal. Appl.
\yr 1983
\vol 17
\issue 3
\pages 220--221
\crossref{https://doi.org/10.1007/BF01078107}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983SK12000011}


Linking options:
  • http://mi.mathnet.ru/eng/faa1559
  • http://mi.mathnet.ru/eng/faa/v17/i3/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Molev, M. L. Nazarov, G. I. Olshanskii, “Yangians and classical Lie algebras”, Russian Math. Surveys, 51:2 (1996), 205–282  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Skrypnyk, T, “Integrable quantum spin chains, non-skew symmetric r-matrices and quasigraded Lie algebras”, Journal of Geometry and Physics, 57:1 (2006), 53  crossref  isi
    3. Skrypnyk, T, “Generalized Gaudin systems in a magnetic field and non-skew-symmetric r-matrices”, Journal of Physics A-Mathematical and Theoretical, 40:44 (2007), 13337  crossref  isi
    4. Vincent Caudrelier, Nicolas Crampé, “Symmetries of Spin Calogero Models”, SIGMA, 4 (2008), 090, 15 pp.  mathnet  crossref  mathscinet  zmath
    5. Skrypnyk T., “Decompositions of Quasigraded Lie Algebras, Non-Skew-Symmetric Classical R-Matrices and Generalized Gaudin Models”, J. Geom. Phys., 75 (2014), 98–112  crossref  isi
    6. Skrypnyk T., “Reductions in finite-dimensional integrable systems and special points of classical r -matrices”, J. Math. Phys., 57:12 (2016), 123504  crossref  mathscinet  zmath  isi  elib  scopus
    7. J. Abedi-Fardad, A. Rezaei-Aghdam, Gh. Haghighatdoost, “Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups”, Theoret. and Math. Phys., 190:1 (2017), 1–17  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:569
    Full text:284
    References:46
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020