RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 1982, Volume 16, Issue 1, Pages 19–24 (Mi faa1592)  

This article is cited in 20 scientific papers (total in 20 papers)

Rational solutions for the equation of commutation of differential operators

P. G. Grinevich


Full text: PDF file (500 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1982, 16:1, 15–19

Bibliographic databases:

UDC: 517.43
Received: 24.11.1980

Citation: P. G. Grinevich, “Rational solutions for the equation of commutation of differential operators”, Funktsional. Anal. i Prilozhen., 16:1 (1982), 19–24; Funct. Anal. Appl., 16:1 (1982), 15–19

Citation in format AMSBIB
\Bibitem{Gri82}
\by P.~G.~Grinevich
\paper Rational solutions for the equation of commutation of differential operators
\jour Funktsional. Anal. i Prilozhen.
\yr 1982
\vol 16
\issue 1
\pages 19--24
\mathnet{http://mi.mathnet.ru/faa1592}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=648805}
\zmath{https://zbmath.org/?q=an:0514.47034}
\transl
\jour Funct. Anal. Appl.
\yr 1982
\vol 16
\issue 1
\pages 15--19
\crossref{https://doi.org/10.1007/BF01081803}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982PM22200003}


Linking options:
  • http://mi.mathnet.ru/eng/faa1592
  • http://mi.mathnet.ru/eng/faa/v16/i1/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Mokhov, “Commuting ordinary differential operators of rank 3 corresponding to an elliptic curve”, Russian Math. Surveys, 37:4 (1982), 129–130  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. P. G. Grinevich, “Vector rank of commuting matrix differential operators. Proof of S. P. Novikov's criterion”, Math. USSR-Izv., 28:3 (1987), 445–465  mathnet  crossref  mathscinet  zmath
    3. O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Math. USSR-Izv., 35:3 (1990), 629–655  mathnet  crossref  mathscinet  zmath
    4. I. A. Taimanov, “Secants of Abelian varieties, theta functions, and soliton equations”, Russian Math. Surveys, 52:1 (1997), 147–218  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. D. P. Novikov, “Algebraic-geometric solutions of the Krichever–Novikov equation”, Theoret. and Math. Phys., 121:3 (1999), 1567–1573  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. A. E. Mironov, “A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2”, Sb. Math., 195:5 (2004), 711–722  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. Gesztesy, F, “An explicit characterization of Calogero–Moser systems”, Transactions of the American Mathematical Society, 358:2 (2006), 603  crossref  isi
    9. A. E. Mironov, “Discrete analogues of Dixmier operators”, Sb. Math., 198:10 (2007), 1433–1442  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    10. A. E. Mironov, “O kommutiruyuschikh differentsialnykh operatorakh ranga $2$”, Sib. elektron. matem. izv., 6 (2009), 533–536  mathnet  mathscinet  elib
    11. Dafeng Zuo, “Commuting differential operators of rank 3 associated to a curve of genus 2”, SIGMA, 8 (2012), 044, 11 pp.  mathnet  crossref  mathscinet
    12. O. I. Mokhov, “On Commutative Subalgebras of the Weyl Algebra Related to Commuting Operators of Arbitrary Rank and Genus”, Math. Notes, 94:2 (2013), 298–300  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    13. Mironov A.E., “Self-Adjoint Commuting Ordinary Differential Operators”, Invent. Math., 197:2 (2014), 417–431  crossref  isi
    14. V. N. Davletshina, “Self-Adjoint Commuting Differential Operators of Rank 2 and Their Deformations Given by Soliton Equations”, Math. Notes, 97:3 (2015), 333–340  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    15. A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    16. A. B. Zheglov, A. E. Mironov, B. T. Saparbayeva, “Commuting Krichever–Novikov differential operators with polynomial coefficients”, Siberian Math. J., 57:5 (2016), 819–823  mathnet  crossref  crossref  isi  elib  elib
    17. Mironov A.E., Zheglov A.B., “Commuting Ordinary Differential Operators with Polynomial Coefficients and Automorphisms of the First Weyl Algebra”, Int. Math. Res. Notices, 2016, no. 10, 2974–2993  crossref  mathscinet  isi  elib  scopus
    18. Pogorelov D.A. Zheglov A.B., “An Algorithm For Construction of Commuting Ordinary Differential Operators By Geometric Data”, Lobachevskii J. Math., 38:6 (2017), 1075–1092  crossref  isi
    19. Emma Previato, Sonia L. Rueda, Maria-Angeles Zurro, “Commuting Ordinary Differential Operators and the Dixmier Test”, SIGMA, 15 (2019), 101, 23 pp.  mathnet  crossref
    20. Gulnara S. Mauleshova, Andrey E. Mironov, “Discretization of Commuting Ordinary Differential Operators of Rank 2 in the Case of Elliptic Spectral Curves”, Proc. Steklov Inst. Math., 310 (2020), 202–213  mathnet  crossref  crossref
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:393
    Full text:156
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020