RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 1982, Volume 16, Issue 2, Pages 30–38 (Mi faa1617)  

This article is cited in 7 scientific papers (total in 7 papers)

Accurate spectral asymptotics for elliptic operators that act in vector bundles

V. Ya. Ivrii


Full text: PDF file (895 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1982, 16:2, 101–108

Bibliographic databases:

UDC: 517.944
Received: 12.02.1981

Citation: V. Ya. Ivrii, “Accurate spectral asymptotics for elliptic operators that act in vector bundles”, Funktsional. Anal. i Prilozhen., 16:2 (1982), 30–38; Funct. Anal. Appl., 16:2 (1982), 101–108

Citation in format AMSBIB
\Bibitem{Ivr82}
\by V.~Ya.~Ivrii
\paper Accurate spectral asymptotics for elliptic operators that act in vector bundles
\jour Funktsional. Anal. i Prilozhen.
\yr 1982
\vol 16
\issue 2
\pages 30--38
\mathnet{http://mi.mathnet.ru/faa1617}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=659163}
\zmath{https://zbmath.org/?q=an:0505.35066|0549.35100}
\transl
\jour Funct. Anal. Appl.
\yr 1982
\vol 16
\issue 2
\pages 101--108
\crossref{https://doi.org/10.1007/BF01081624}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982PY26000004}


Linking options:
  • http://mi.mathnet.ru/eng/faa1617
  • http://mi.mathnet.ru/eng/faa/v16/i2/p30

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Z. Levendorskii, “The method of approximate spectral projection”, Math. USSR-Izv., 27:3 (1986), 451–502  mathnet  crossref  mathscinet  zmath
    2. Yu. G. Safarov, “Asymptotic of the spectral function of a positive elliptic operator without the nontrap condition”, Funct. Anal. Appl., 22:3 (1988), 213–223  mathnet  crossref  mathscinet  zmath  isi
    3. M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. M. S. Agranovich, G. V. Rozenblum, “Spectral boundary problems for Dirac systems with a singular potential”, St. Petersburg Math. J., 16:1 (2005), 25–57  mathnet  crossref  mathscinet  zmath
    5. I. V. Kamotskii, M. V. Ruzhansky, “Estimates and Spectral Asymptotics for Systems with Multiplicities”, Funct. Anal. Appl., 39:4 (2005), 308–310  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Kamotski, I, “Regularity properties, representation of solutions, and spectral asymptotics of systems with multiplicities”, Communications in Partial Differential Equations, 32:1 (2007), 1  crossref  isi
    7. A. I. Kozko, A. S. Pechentsov, “The spectral function of a singular differential operator of order $2m$”, Izv. Math., 74:6 (2010), 1205–1224  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:179
    Full text:71
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020