RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 1981, Volume 15, Issue 2, Pages 81–82 (Mi faa1720)  

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

Spectral properties of a class of quadratic operator pencils

A. I. Miloslavskii


Full text: PDF file (283 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1981, 15:2, 142–144

Bibliographic databases:

UDC: 517.43
Received: 02.06.1980

Citation: A. I. Miloslavskii, “Spectral properties of a class of quadratic operator pencils”, Funktsional. Anal. i Prilozhen., 15:2 (1981), 81–82; Funct. Anal. Appl., 15:2 (1981), 142–144

Citation in format AMSBIB
\Bibitem{Mil81}
\by A.~I.~Miloslavskii
\paper Spectral properties of a class of quadratic operator pencils
\jour Funktsional. Anal. i Prilozhen.
\yr 1981
\vol 15
\issue 2
\pages 81--82
\mathnet{http://mi.mathnet.ru/faa1720}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=617479}
\zmath{https://zbmath.org/?q=an:0463.47015|0467.47012}
\transl
\jour Funct. Anal. Appl.
\yr 1981
\vol 15
\issue 2
\pages 142--144
\crossref{https://doi.org/10.1007/BF01082292}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1981MU34400015}


Linking options:
  • http://mi.mathnet.ru/eng/faa1720
  • http://mi.mathnet.ru/eng/faa/v15/i2/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Miloslavskii, “Foundation of the spectral approach in nonconservative problems of the theory of elastic stability”, Funct. Anal. Appl., 17:3 (1983), 233–235  mathnet  crossref  mathscinet  zmath  isi
    2. Nguyen Van Lyong, “The spectral properties of a quadratic pencil of operators”, Russian Math. Surveys, 48:1 (1993), 180–182  mathnet  crossref  mathscinet  zmath  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:175
    Full text:82
    References:18
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020