RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2007, Volume 41, Issue 1, Pages 23–38 (Mi faa1761)  

This article is cited in 10 scientific papers (total in 10 papers)

Bifurcation Calculus by the Extended Functional Method

Ya. Sh. Il'yasov

Bashkir State University

Abstract: We justify variational principles of a new type corresponding to bifurcations of solutions for families of equations given in variational form. To illustrate the method, we consider elliptic equations with sign-indefinite nonlinearities and prove the existence of pairwise creation-annihilation bifurcations of their positive solutions. The corresponding bifurcation points are expressed via explicitly specified variational principles.

Keywords: bifurcation of solutions, minimax problem, elliptic equation, sign-indefinite nonlinearity

DOI: https://doi.org/10.4213/faa1761

Full text: PDF file (267 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2007, 41:1, 18–30

Bibliographic databases:

UDC: 517.957+517.972.5
Received: 10.06.2005

Citation: Ya. Sh. Il'yasov, “Bifurcation Calculus by the Extended Functional Method”, Funktsional. Anal. i Prilozhen., 41:1 (2007), 23–38; Funct. Anal. Appl., 41:1 (2007), 18–30

Citation in format AMSBIB
\Bibitem{Ily07}
\by Ya.~Sh.~Il'yasov
\paper Bifurcation Calculus by the Extended Functional Method
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 1
\pages 23--38
\mathnet{http://mi.mathnet.ru/faa1761}
\crossref{https://doi.org/10.4213/faa1761}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2333980}
\zmath{https://zbmath.org/?q=an:1124.35307}
\elib{http://elibrary.ru/item.asp?id=9450963}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 1
\pages 18--30
\crossref{https://doi.org/10.1007/s10688-007-0002-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000245717700002}
\elib{http://elibrary.ru/item.asp?id=14320829}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947362459}


Linking options:
  • http://mi.mathnet.ru/eng/faa1761
  • https://doi.org/10.4213/faa1761
  • http://mi.mathnet.ru/eng/faa/v41/i1/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Il'yasov Ya., “A duality principle corresponding to the parabolic equations”, Phys. D, 237:5 (2008), 692–698  crossref  mathscinet  zmath  isi
    2. Lubyshev V., “Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem”, Commun. Pure Appl. Anal., 8:3 (2009), 999–1018  crossref  mathscinet  zmath  isi  elib
    3. Il'yasov Ya., Runst Th., “Positive solutions of indefinite equations with p-Laplacian and supercritical nonlinearity”, Complex Var. Elliptic Equ., 56:10-11 (2011), 945–954  crossref  mathscinet  zmath  isi
    4. A. A. Ivanov, Ya. Sh. Ilyasov, “Nakhozhdenie bifurkatsii dlya reshenii nelineinykh uravnenii metodami kvadratichnogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 350–364  mathnet  crossref  zmath  elib
    5. Bobkov V., Il'Yasov Ya., “Asymptotic Behaviour of Branches for Ground States of Elliptic Systems”, Electron. J. Differ. Equ., 2013, 212  mathscinet  zmath  isi  elib
    6. Bobkov V., Tanaka M., “on Positive Solutions For (P, Q)-Laplace Equations With Two Parameters”, Calc. Var. Partial Differ. Equ., 54:3 (2015), 3277–3301  crossref  mathscinet  zmath  isi  elib
    7. Il'yasov Ya., Ivanov A., “Computation of Maximal Turning Points To Nonlinear Equations By Nonsmooth Optimization”, Optim. Method Softw., 31:1 (2016), 1–23  crossref  mathscinet  zmath  isi
    8. Bobkov V., Il'yasov Ya., “Maximal existence domains of positive solutions for two-parametric systems of elliptic equations”, Complex Var. Elliptic Equ., 61:5 (2016), 587–607  crossref  mathscinet  zmath  isi  elib  scopus
    9. Ilyasov Ya.Sh., “Bifurcation and Blow-Up Results For Equations With P-Laplacian and Convex-Concave Nonlinearity”, Electron. J. Qual. Theory Differ., 2017, no. 96, 1–13  crossref  mathscinet  isi
    10. Bobkov V., Tanaka M., “Remarks on Minimizers For (P, Q)-Laplace Equations With Two Parameters”, Commun. Pure Appl. Anal, 17:3 (2018), 1219–1253  crossref  mathscinet  zmath  isi  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:438
    Full text:175
    References:55
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020