RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2007, Volume 41, Issue 1, Pages 52–65 (Mi faa1762)  

This article is cited in 1 scientific paper (total in 1 paper)

On Rational Isomorphisms of Lie Algebras

S. T. Sadetov

Don State Technical University

Abstract: Let $\mathfrak{n}$ be a finite-dimensional noncommutative nilpotent Lie algebra for which the ring of polynomial invariants of the coadjoint representation is generated by linear functions. Let $\mathfrak{g}$ be an arbitrary Lie algebra. We consider semidirect sums $\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g}$ with respect to an arbitrary representation $\rho\colon \mathfrak{g}\to\operatorname{der}\mathfrak{n}$ such that the center $z\mathfrak{n}$ of $\mathfrak{n}$ has a $\rho$-invariant complement.
We establish that some localization $\widetilde{P}(\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g})$ of the Poisson algebra of polynomials in elements of the Lie algebra $\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g}$ is isomorphic to the tensor product of the standard Poisson algebra of a nonzero symplectic space by a localization of the Poisson algebra of the Lie subalgebra $(z\mathfrak{n})\dashv\mathfrak{g}$. If $[\mathfrak{n},\mathfrak{n}]\subseteq z\mathfrak{n}$, then a similar tensor product decomposition is established for the localized universal enveloping algebra of the Lie algebra $\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g}$. For the case in which $\mathfrak{n}$ is a Heisenberg algebra, we obtain explicit formulas for the embeddings of $\mathfrak{g}_P$ in $\widetilde{P}(\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g})$. These formulas have applications, some related to integrability in mechanics and others to the Gelfand–Kirillov conjecture.

Keywords: Lie algebra, representation, Heisenberg algebra, Poisson algebra, universal enveloping algebra

DOI: https://doi.org/10.4213/faa1762

Full text: PDF file (266 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2007, 41:1, 42–53

Bibliographic databases:

UDC: 512.81
Received: 07.09.2004

Citation: S. T. Sadetov, “On Rational Isomorphisms of Lie Algebras”, Funktsional. Anal. i Prilozhen., 41:1 (2007), 52–65; Funct. Anal. Appl., 41:1 (2007), 42–53

Citation in format AMSBIB
\Bibitem{Sad07}
\by S.~T.~Sadetov
\paper On Rational Isomorphisms of Lie Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 1
\pages 52--65
\mathnet{http://mi.mathnet.ru/faa1762}
\crossref{https://doi.org/10.4213/faa1762}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2333982}
\zmath{https://zbmath.org/?q=an:1146.17020}
\elib{http://elibrary.ru/item.asp?id=9450965}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 1
\pages 42--53
\crossref{https://doi.org/10.1007/s10688-007-0004-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000245717700004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947387533}


Linking options:
  • http://mi.mathnet.ru/eng/faa1762
  • https://doi.org/10.4213/faa1762
  • http://mi.mathnet.ru/eng/faa/v41/i1/p52

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Sadetov S.T., “On Lf-Algebras”, Dokl. Math., 88:3 (2013), 634–636  crossref  crossref  mathscinet  zmath  isi  elib
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:301
    Full text:107
    References:49
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020