|
This article is cited in 14 scientific papers (total in 14 papers)
Second term of the spectral asymptotic expansion of the Laplace–Beltrami operator on manifolds with boundary
V. Ya. Ivrii
Full text:
PDF file (955 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 1980, 14:2, 98–106
Bibliographic databases:
UDC:
517.944 Received: 15.11.1979
Citation:
V. Ya. Ivrii, “Second term of the spectral asymptotic expansion of the Laplace–Beltrami operator on manifolds with boundary”, Funktsional. Anal. i Prilozhen., 14:2 (1980), 25–34; Funct. Anal. Appl., 14:2 (1980), 98–106
Citation in format AMSBIB
\Bibitem{Ivr80}
\by V.~Ya.~Ivrii
\paper Second term of the spectral asymptotic expansion of the Laplace--Beltrami operator on manifolds with boundary
\jour Funktsional. Anal. i Prilozhen.
\yr 1980
\vol 14
\issue 2
\pages 25--34
\mathnet{http://mi.mathnet.ru/faa1796}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=575202}
\zmath{https://zbmath.org/?q=an:0435.35059|0453.35068}
\transl
\jour Funct. Anal. Appl.
\yr 1980
\vol 14
\issue 2
\pages 98--106
\crossref{https://doi.org/10.1007/BF01086550}
Linking options:
http://mi.mathnet.ru/eng/faa1796 http://mi.mathnet.ru/eng/faa/v14/i2/p25
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. Ya. Ivrii, “Exact spectral asymptotics for the Laplace–Beltrami operator in the case of general elliptic boundary conditions”, Funct. Anal. Appl., 15:1 (1981), 59–60
-
V. F. Lazutkin, D. Ya. Terman, “Estimation of the remainder in the Weyl formula”, Funct. Anal. Appl., 15:4 (1981), 299–300
-
D. A. Leites, “Irreducible representations of Lie superalgebras of vector fields and invariant differential operators”, Funct. Anal. Appl., 16:1 (1982), 62–64
-
V. Ya. Ivrii, “Accurate spectral asymptotics for elliptic operators that act in vector bundles”, Funct. Anal. Appl., 16:2 (1982), 101–108
-
V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42
-
V. Ya. Ivrii, “Asymptotics of a spectral problem connected with the Laplace–Beltrami operator on a manifold with boundary”, Funct. Anal. Appl., 17:1 (1983), 56–57
-
V. Ya. Ivrii, S. I. Fedorova, “Dilatation and the asymptotics of the eigenvalues of spectral problems with singularities”, Funct. Anal. Appl., 20:4 (1986), 277–281
-
Yu. G. Safarov, “Exact asymptotics of the spectrum of a boundary value problem, and periodic billiards”, Math. USSR-Izv., 33:3 (1989), 553–573
-
T. E. Gureev, “Exact asymptotics of the spectrum of the Maxwell operator in a solid resonator”, Funct. Anal. Appl., 24:3 (1990), 235–237
-
Yu. G. Safarov, N. D. Filonov, “Asymptotic Estimates of the Difference Between the Dirichlet and Neumann Counting Functions”, Funct. Anal. Appl., 44:4 (2010), 286–294
-
E. A. Gutkin, “Dinamika billiarda: obzornaya statya s aktsentom na nereshennye zadachi”, Nelineinaya dinam., 7:3 (2011), 489–512
-
Miyazaki Y., “Asymptotic behavior of normal derivatives of eigenfunctions for the Dirichlet Laplacian”, J Math Anal Appl, 388:1 (2012), 205–218
-
Glutsyuk A. Kudryashov Yu., “No Planar Billiard Possesses an Open Set of Quadrilateral Trajectories”, J. Mod. Dyn., 6:3 (2012), 287–326
-
Alexey Glutsyuk, “On quadrilateral orbits in complex algebraic planar billiards”, Mosc. Math. J., 14:2 (2014), 239–289
|
Number of views: |
This page: | 665 | Full text: | 317 | References: | 40 | First page: | 2 |
|