|
This article is cited in 13 scientific papers (total in 13 papers)
Brief communications
Potentials with zero coefficient of reflection on a background of finite-zone potentials
I. M. Krichever
Full text:
PDF file (270 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 1975, 9:2, 161–163
Bibliographic databases:
Received: 23.08.1974
Citation:
I. M. Krichever, “Potentials with zero coefficient of reflection on a background of finite-zone potentials”, Funktsional. Anal. i Prilozhen., 9:2 (1975), 77–78; Funct. Anal. Appl., 9:2 (1975), 161–163
Citation in format AMSBIB
\Bibitem{Kri75}
\by I.~M.~Krichever
\paper Potentials with zero coefficient of reflection on a background of finite-zone potentials
\jour Funktsional. Anal. i Prilozhen.
\yr 1975
\vol 9
\issue 2
\pages 77--78
\mathnet{http://mi.mathnet.ru/faa2248}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=387712}
\zmath{https://zbmath.org/?q=an:0333.34022}
\transl
\jour Funct. Anal. Appl.
\yr 1975
\vol 9
\issue 2
\pages 161--163
\crossref{https://doi.org/10.1007/BF01075460}
Linking options:
http://mi.mathnet.ru/eng/faa2248 http://mi.mathnet.ru/eng/faa/v9/i2/p77
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear
operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146
-
I. M. Gel'fand, L. A. Dikii, “Fractional powers of operators and Hamiltonian systems”, Funct. Anal. Appl., 10:4 (1976), 259–273
-
I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry”, Funct. Anal. Appl., 11:1 (1977), 12–26
-
R. A. Sharipov, “Finite-zone analogues of $N$-multiplet solutions of the Korteweg–de Vries equation”, Russian Math. Surveys, 41:5 (1986), 165–166
-
P. G. Grinevich, “Rapidly decreasing potentials on a background of finite-zone potentials and the $\partial$-problem on Riemann spaces”, Funct. Anal. Appl., 23:4 (1989), 321–322
-
R. F. Bikbaev, R. A. Sharipov, “Asymptotics at $t\to\infty$ of the solution to the Cauchy problem for the Korteweg–de Vries equation in the class of potentials with finite-gap behavior as $x\to\pm\infty$”, Theoret. and Math. Phys., 78:3 (1989), 244–252
-
Theoret. and Math. Phys., 99:2 (1994), 599–605
-
S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116
-
P. G. Grinevich, “Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity”, Russian Math. Surveys, 55:6 (2000), 1015–1083
-
A. A. Akhmetshin, Yu. S. Vol'vovskii, “The Dynamics of Zeros of Finite-Gap Solutions of the Schrödinger Equation”, Funct. Anal. Appl., 35:4 (2001), 247–256
-
I. A. Taimanov, “On two-dimensional finite-gap potential Schrödinger and Dirac operators with singular spectral curves”, Siberian Math. J., 44:4 (2003), 686–694
-
Matveev, VB, “30 years of finite-gap integration theory”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366:1867 (2008), 837
-
A. V. Ilina, I. M. Krichever, N. A. Nekrasov, “Dvumernye periodicheskie operatory Shredingera, integriruemye na «sobstvennom» urovne energii”, Funkts. analiz i ego pril., 53:1 (2019), 31–48
|
Number of views: |
This page: | 429 | Full text: | 131 | References: | 34 | First page: | 4 |
|