RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2000, Volume 34, Issue 1, Pages 29–40 (Mi faa280)  

This article is cited in 11 scientific papers (total in 11 papers)

Three-Page Approach to Knot Theory. Universal Semigroup

I. A. Dynnikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: An explicit construction of a finitely presented semigroup whose central elements are in a one-to-one correspondence with the isotopy classes of unoriented links in the three-space is given, together with a finite presentation for the group of invertible elements of the semigroup. The group is presented by two generators and three relations. The commutator subgroup of the group is isomorphic to the braid group of infinite index. A similar construction is given for band-links. The Kauffman theorems on the existence of polynomial band-link invariants satisfying some skein-relations are stated algebraically.

DOI: https://doi.org/10.4213/faa280

Full text: PDF file (1065 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2000, 34:1, 24–32

Bibliographic databases:

UDC: 515.164.63
Received: 12.10.1999

Citation: I. A. Dynnikov, “Three-Page Approach to Knot Theory. Universal Semigroup”, Funktsional. Anal. i Prilozhen., 34:1 (2000), 29–40; Funct. Anal. Appl., 34:1 (2000), 24–32

Citation in format AMSBIB
\Bibitem{Dyn00}
\by I.~A.~Dynnikov
\paper Three-Page Approach to Knot Theory. Universal Semigroup
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 1
\pages 29--40
\mathnet{http://mi.mathnet.ru/faa280}
\crossref{https://doi.org/10.4213/faa280}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1756732}
\zmath{https://zbmath.org/?q=an:0958.57006}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 1
\pages 24--32
\crossref{https://doi.org/10.1007/BF02467064}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000087490500003}


Linking options:
  • http://mi.mathnet.ru/eng/faa280
  • https://doi.org/10.4213/faa280
  • http://mi.mathnet.ru/eng/faa/v34/i1/p29

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Dynnikov, “Finitely Presented Groups and Semigroups in Knot Theory”, Proc. Steklov Inst. Math., 231 (2000), 220–237  mathnet  mathscinet  zmath
    2. V. A. Kurlin, “Dynnikov Three-Page Diagrams of Spatial $3$-Valent Graphs”, Funct. Anal. Appl., 35:3 (2001), 230–233  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Dynnikov, IA, “A new way to represent links. One-dimensional formalism and untangling technology”, Acta Applicandae Mathematicae, 69:3 (2001), 243  crossref  mathscinet  zmath  isi  scopus
    4. Andreeva M.V., Dynnikov I.A., Polthier K., “A mathematical webservice for recognizing the unknot”, Mathematical Software, Proceedings, 2002, 201–207  crossref  zmath  isi
    5. I. A. Dynnikov, “Recognition algorithms in knot theory”, Russian Math. Surveys, 58:6 (2003), 1093–1139  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. V. A. Kurlin, “Basic embeddings of graphs and Dynnikov's three-page embedding method”, Russian Math. Surveys, 58:2 (2003), 372–374  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. V. V. Vershinin, V. A. Kurlin, “Three-Page Embeddings of Singular Knots”, Funct. Anal. Appl., 38:1 (2004), 14–27  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. Dujmovic, V, “Stacks, queues and tracks: Layouts of graph subdivisions”, Discrete Mathematics and Theoretical Computer Science, 7:1 (2005), 155  mathscinet  zmath  isi
    9. Kurlin, V, “Three-page encoding and complexity theory for spatial graphs”, Journal of Knot Theory and Its Ramifications, 16:1 (2007), 59  crossref  mathscinet  zmath  isi  scopus
    10. Vernitski A., “Describing Semigroups With Defining Relations of the Form Xy = Yz and Yx = Zy and Connections With Knot Theory”, Semigr. Forum, 95:1 (2017), 66–82  crossref  mathscinet  zmath  isi  scopus
    11. Fish A., Lisitsa A., Vernitski A., “Visual Algebraic Proofs For Unknot Detection”, Diagrammatic Representation and Inference, Diagrams 2018, Lecture Notes in Artificial Intelligence, 10871, eds. Chapman P., Stapleton G., Moktefi A., PerezKriz S., Bellucci F., Springer International Publishing Ag, 2018, 89–104  crossref  isi  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:455
    Full text:199
    References:40
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020