Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2007, Volume 41, Issue 3, Pages 1–16 (Mi faa2864)  

This article is cited in 2 scientific papers (total in 2 papers)

On Locally Definitizable Matrix Functions

T. Ya. Azizova, P. Jonasb

a Voronezh State University
b Institut für Mathematik, Technische Universität Berlin

Abstract: We study analytic properties of special classes of matrix functions (locally definitizable and locally Nevanlinna functions) by methods of operator theory. The aim of this paper is to prove that if $G(\lambda)$ is a locally definitizable or locally generalized matrix Nevanlinna function, then $-(G(\lambda))^{-1}$ belongs to the same class.

Keywords: Krein space, meromorphic function, definitizable operator-function, Nevanlinna matrix-function, generalized resolvent

DOI: https://doi.org/10.4213/faa2864

Full text: PDF file (253 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2007, 41:3, 169–180

Bibliographic databases:

UDC: 517.98
Received: 15.09.2005

Citation: T. Ya. Azizov, P. Jonas, “On Locally Definitizable Matrix Functions”, Funktsional. Anal. i Prilozhen., 41:3 (2007), 1–16; Funct. Anal. Appl., 41:3 (2007), 169–180

Citation in format AMSBIB
\Bibitem{AziJon07}
\by T.~Ya.~Azizov, P.~Jonas
\paper On Locally Definitizable Matrix Functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 3
\pages 1--16
\mathnet{http://mi.mathnet.ru/faa2864}
\crossref{https://doi.org/10.4213/faa2864}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2381951}
\zmath{https://zbmath.org/?q=an:1156.47036}
\elib{https://elibrary.ru/item.asp?id=24674300}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 3
\pages 169--180
\crossref{https://doi.org/10.1007/s10688-007-0015-x}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000251366100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35648956802}


Linking options:
  • http://mi.mathnet.ru/eng/faa2864
  • https://doi.org/10.4213/faa2864
  • http://mi.mathnet.ru/eng/faa/v41/i3/p1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Behrndt J., “Boundary value problems with eigenvalue depending boundary conditions”, Math. Nachr., 282:5 (2009), 659–689  crossref  mathscinet  zmath  isi  elib  scopus
    2. Behrndt J., Moews R., Trunk C., “On Finite Rank Perturbations of Selfadjoint Operators in Krein Spaces and Eigenvalues in Spectral Gaps”, Complex Anal. Oper. Theory, 8:4 (2014), 925–936  crossref  mathscinet  zmath  isi  elib  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:288
    Full text:143
    References:53
    First page:6

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022