Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2007, Volume 41, Issue 4, Pages 87–93 (Mi faa2885)  

This article is cited in 5 scientific papers (total in 5 papers)

Brief communications

Euler Characteristic of Fredholm Quasicomplexes

N. N. Tarkhanov

University of Potsdam

Abstract: By quasicomplexes are usually meant perturbations of complexes small in some sense. Of interest are not only perturbations within the category of complexes but also those going beyond this category. A sequence perturbed in this way is no longer a complex, and so it bears no cohomology. We show how to introduce Euler characteristic for small perturbations of Fredholm complexes.

Keywords: essential complexes, Fredholm complexes, Euler characteristic

DOI: https://doi.org/10.4213/faa2885

Full text: PDF file (170 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2007, 41:4, 318–322

Bibliographic databases:

UDC: 517.951+517.954
Received: 16.03.2006

Citation: N. N. Tarkhanov, “Euler Characteristic of Fredholm Quasicomplexes”, Funktsional. Anal. i Prilozhen., 41:4 (2007), 87–93; Funct. Anal. Appl., 41:4 (2007), 318–322

Citation in format AMSBIB
\Bibitem{Tar07}
\by N.~N.~Tarkhanov
\paper Euler Characteristic of Fredholm Quasicomplexes
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 4
\pages 87--93
\mathnet{http://mi.mathnet.ru/faa2885}
\crossref{https://doi.org/10.4213/faa2885}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2411611}
\zmath{https://zbmath.org/?q=an:1154.58010}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 4
\pages 318--322
\crossref{https://doi.org/10.1007/s10688-007-0032-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000253520400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349050536}


Linking options:
  • http://mi.mathnet.ru/eng/faa2885
  • https://doi.org/10.4213/faa2885
  • http://mi.mathnet.ru/eng/faa/v41/i4/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Wallenta D., “Elliptic quasicomplexes on compact closed manifolds”, Equations Operator Theory, 73:4 (2012), 517–536  crossref  mathscinet  zmath  isi  scopus
    2. Wallenta D., “A Lefschetz Fixed Point Formula For Elliptic Quasicomplexes”, Integr. Equ. Oper. Theory, 78:4 (2014), 577–587  crossref  mathscinet  zmath  isi  scopus
    3. Azal Mera, Nikolai Tarkhanov, “The Neumann problem after Spencer”, Zhurn. SFU. Ser. Matem. i fiz., 10:4 (2017), 474–493  mathnet  crossref
    4. Ihsane Malass, Nikolai Tarkhanov, “The de Rham cohomology through Hilbert space methods”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 455–465  mathnet  crossref
    5. Ihsane Malass, Nikolai Tarkhanov, “A perturbation of the de Rham complex”, Zhurn. SFU. Ser. Matem. i fiz., 13:5 (2020), 519–532  mathnet  crossref
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:251
    Full text:140
    References:43
    First page:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022