RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2008, Volume 42, Issue 1, Pages 33–38 (Mi faa2888)  

This article is cited in 1 scientific paper (total in 1 paper)

Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain

A. L. Konstantinov

M. V. Lomonosov Moscow State University

Abstract: The Shilov boundary of a symmetric domain $D=G/K$ of tube type has the form $G/P$, where $P$ is a maximal parabolic subgroup of the group $G$. We prove that the simply connected covering of the Shilov boundary possesses a unique (up to inversion) invariant ordering, which is induced by the continuous invariant ordering on the simply connected covering of $G$ and can readily be described in terms of the corresponding Jordan algebra.

Keywords: invariant cone, invariant ordering, Lie semigroup

DOI: https://doi.org/10.4213/faa2888

Full text: PDF file (153 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2008, 42:1, 28–32

Bibliographic databases:

UDC: 512.816.4
Received: 07.09.2006

Citation: A. L. Konstantinov, “Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain”, Funktsional. Anal. i Prilozhen., 42:1 (2008), 33–38; Funct. Anal. Appl., 42:1 (2008), 28–32

Citation in format AMSBIB
\Bibitem{Kon08}
\by A.~L.~Konstantinov
\paper Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 1
\pages 33--38
\mathnet{http://mi.mathnet.ru/faa2888}
\crossref{https://doi.org/10.4213/faa2888}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2423976}
\zmath{https://zbmath.org/?q=an:1168.22009}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 1
\pages 28--32
\crossref{https://doi.org/10.1007/s10688-008-0003-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255229000003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41549119986}


Linking options:
  • http://mi.mathnet.ru/eng/faa2888
  • https://doi.org/10.4213/faa2888
  • http://mi.mathnet.ru/eng/faa/v42/i1/p33

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ben Simon G., Hartnick T., “Tobias Invariant orders on Hermitian Lie groups”, J. Lie Theory, 22:2 (2012), 437–463  mathscinet  zmath  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:198
    Full text:57
    References:25
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019