RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2008, Volume 42, Issue 2, Pages 28–43 (Mi faa2900)  

This article is cited in 2 scientific papers (total in 2 papers)

The Lorentz-Invariant Deformation of the Whitham System for the Nonlinear Klein–Gordon Equation

A. Ya. Maltsev

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: We consider a deformation of the Whitham system for the nonlinear Klein–Gordon equation. This deformation has a Lorentz-invariant form. Using the Lagrangian formalism of the original system, we obtain the first nontrivial correction to the Whitham system in the Lorentz-invariant approach.

Keywords: asymptotic method, slow modulation

DOI: https://doi.org/10.4213/faa2900

Full text: PDF file (254 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2008, 42:2, 103–115

Bibliographic databases:

UDC: 517.929.8
Received: 11.09.2006

Citation: A. Ya. Maltsev, “The Lorentz-Invariant Deformation of the Whitham System for the Nonlinear Klein–Gordon Equation”, Funktsional. Anal. i Prilozhen., 42:2 (2008), 28–43; Funct. Anal. Appl., 42:2 (2008), 103–115

Citation in format AMSBIB
\Bibitem{Mal08}
\by A.~Ya.~Maltsev
\paper The Lorentz-Invariant Deformation of the Whitham System for the Nonlinear Klein--Gordon Equation
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 2
\pages 28--43
\mathnet{http://mi.mathnet.ru/faa2900}
\crossref{https://doi.org/10.4213/faa2900}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2438016}
\zmath{https://zbmath.org/?q=an:1171.37029}
\elib{http://elibrary.ru/item.asp?id=11161689}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 2
\pages 103--115
\crossref{https://doi.org/10.1007/s10688-008-0016-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000257324700004}
\elib{http://elibrary.ru/item.asp?id=13587380}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-46249118087}


Linking options:
  • http://mi.mathnet.ru/eng/faa2900
  • https://doi.org/10.4213/faa2900
  • http://mi.mathnet.ru/eng/faa/v42/i2/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Dobrokhotov S.Yu., Minenkov D.S., “On Various Averaging Methods for a Nonlinear Oscillator with Slow Time-dependent Potential and a Nonconservative Perturbation”, Regular & Chaotic Dynamics, 15:2–3 (2010), 285–299  crossref  mathscinet  zmath  adsnasa  isi
    2. S. Yu. Dobrokhotov, D. S. Minenkov, “Remark on the phase shift in the Kuzmak–Whitham ansatz”, Theoret. and Math. Phys., 166:3 (2011), 303–316  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:391
    Full text:101
    References:50
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019