RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2000, Volume 34, Issue 2, Pages 9–22 (Mi faa291)  

This article is cited in 6 scientific papers (total in 6 papers)

Poincaré–Steklov Integral Equations and the Riemann Monodromy Problem

A. B. Bogatyrevab

a Institute of Numerical Mathematics, Russian Academy of Sciences
b Moscow Institute of Physics and Technology

Abstract: We consider the Poincaré–Steklov singular integral equation obtained by reducing a boundary value problem for the Laplace operator with a spectral parameter in the boundary condition to the boundary. It is shown that this equation can be restated equivalently in terms of the classical Riemann monodromy problem. Several equations of this type are solved in elliptic functions.

DOI: https://doi.org/10.4213/faa291

Full text: PDF file (460 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2000, 34:2, 86–97

Bibliographic databases:

UDC: 517.9
Received: 24.02.1998

Citation: A. B. Bogatyrev, “Poincaré–Steklov Integral Equations and the Riemann Monodromy Problem”, Funktsional. Anal. i Prilozhen., 34:2 (2000), 9–22; Funct. Anal. Appl., 34:2 (2000), 86–97

Citation in format AMSBIB
\Bibitem{Bog00}
\by A.~B.~Bogatyrev
\paper Poincar\'e--Steklov Integral Equations and the Riemann Monodromy Problem
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 2
\pages 9--22
\mathnet{http://mi.mathnet.ru/faa291}
\crossref{https://doi.org/10.4213/faa291}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1773840}
\zmath{https://zbmath.org/?q=an:0963.45002}
\elib{http://elibrary.ru/item.asp?id=13332288}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 2
\pages 86--97
\crossref{https://doi.org/10.1007/BF02482421}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000088391800002}


Linking options:
  • http://mi.mathnet.ru/eng/faa291
  • https://doi.org/10.4213/faa291
  • http://mi.mathnet.ru/eng/faa/v34/i2/p9

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. B. Bogatyrev, “Manifolds of support sets of Chebyshev polynomials”, Math. Notes, 67:6 (2000), 699–706  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. B. Bogatyrev, “PS$_3$ integral equations and projective structures on Riemann surfaces”, Sb. Math., 192:4 (2001), 479–514  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Bogatyrev, AB, “Antisymmetric solutions of Poincaré-Steklov integral equations”, Doklady Mathematics, 77:3 (2008), 378  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    4. Bogatyrev A., “Poincaré-Steklov Integral Equations and Moduli of Pants”, Analysis and Mathematical Physics, Trends in Mathematics, 2009, 21–48  mathscinet  zmath  isi
    5. Bogatyrev A.B., “Pictorial Representation for Antisymmetric Eigenfunctions of PS-3 Integral Equations”, Math Phys Anal Geom, 13:2 (2010), 105–143  crossref  mathscinet  zmath  isi  elib  scopus
    6. Mityushev V.V., “Composites with invisible inclusions: Eigenvalues of -linear problem”, Eur. J. Appl. Math., 27:5 (2016), 796–806  crossref  mathscinet  zmath  isi  elib  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:505
    Full text:154
    References:48
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020