RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2000, Volume 34, Issue 2, Pages 33–42 (Mi faa293)  

This article is cited in 7 scientific papers (total in 7 papers)

Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations

A. V. Loboda

Voronezh State Academy of Building and Architecture

Abstract: In the paper, a classification of real hypersurfaces of the space $\mathbb{C}^2$ that admit transitive actions of local Lie groups of holomorphic transformations is constructed.
Any nonspherical Levi nondegenerate homogeneous surface is determined by the triple of real coefficients $N^2_{520}$, $N_{440}$, $\operatorname{Im}N_{421}$ of a Moser normal equation. All such surfaces are described by several quadratic curves in the space of above coefficients.

DOI: https://doi.org/10.4213/faa293

Full text: PDF file (271 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2000, 34:2, 106–113

Bibliographic databases:

UDC: 517.55
Received: 24.06.1998

Citation: A. V. Loboda, “Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations”, Funktsional. Anal. i Prilozhen., 34:2 (2000), 33–42; Funct. Anal. Appl., 34:2 (2000), 106–113

Citation in format AMSBIB
\Bibitem{Lob00}
\by A.~V.~Loboda
\paper Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 2
\pages 33--42
\mathnet{http://mi.mathnet.ru/faa293}
\crossref{https://doi.org/10.4213/faa293}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1773842}
\zmath{https://zbmath.org/?q=an:1002.32031}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 2
\pages 106--113
\crossref{https://doi.org/10.1007/BF02482423}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000088391800004}


Linking options:
  • http://mi.mathnet.ru/eng/faa293
  • https://doi.org/10.4213/faa293
  • http://mi.mathnet.ru/eng/faa/v34/i2/p33

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups”, Sb. Math., 192:12 (2001), 1741–1761  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. V. Loboda, “Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups”, Proc. Steklov Inst. Math., 235 (2001), 107–135  mathnet  mathscinet  zmath
    3. A. V. Loboda, “Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups”, Funct. Anal. Appl., 36:2 (2002), 151–153  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. A. V. Loboda, “Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation”, Math. Notes, 73:3 (2003), 419–423  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. M. S. Danilov, A. V. Loboda, “Affine Homogeneity of Indefinite Real Hypersurfaces in the Space $\mathbb{C}^3$”, Math. Notes, 88:6 (2010), 827–843  mathnet  crossref  crossref  mathscinet  isi
    6. V. I. Sukovykh, “Formuly dlya mladshikh teilorovskikh koeffitsientov odnorodnykh poverkhnostei”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2016, no. 5(36), 104–123  mathnet  crossref
    7. A. V. Atanov, A. V. Loboda, V. I. Sukovykh, “On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$”, Proc. Steklov Inst. Math., 298 (2017), 13–34  mathnet  crossref  crossref  isi  elib  elib
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:280
    Full text:117
    References:41

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020