|
This article is cited in 11 scientific papers (total in 11 papers)
The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a Cusp
S. A. Nazarov Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Peterburg
Abstract:
Simple algebraic conditions are found for the existence of essential spectrum of the Neumann problem operator for a formally self-adjoint elliptic system of differential equations in a domain with a cuspidal singular point. The spectrum is discrete in the scalar case.
Keywords:
peak, cusp, self-adjoint system of differential equations with the polynomial property; essential, continuous, and discrete spectra
DOI:
https://doi.org/10.4213/faa2934
Full text:
PDF file (243 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 2009, 43:1, 44–54
Bibliographic databases:
UDC:
517.946 Received: 07.05.2007
Citation:
S. A. Nazarov, “The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a Cusp”, Funktsional. Anal. i Prilozhen., 43:1 (2009), 55–67; Funct. Anal. Appl., 43:1 (2009), 44–54
Citation in format AMSBIB
\Bibitem{Naz09}
\by S.~A.~Nazarov
\paper The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 1
\pages 55--67
\mathnet{http://mi.mathnet.ru/faa2934}
\crossref{https://doi.org/10.4213/faa2934}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2503865}
\zmath{https://zbmath.org/?q=an:1271.35055}
\elib{https://elibrary.ru/item.asp?id=13597847}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 1
\pages 44--54
\crossref{https://doi.org/10.1007/s10688-009-0005-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000264264100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62749140734}
Linking options:
http://mi.mathnet.ru/eng/faa2934https://doi.org/10.4213/faa2934 http://mi.mathnet.ru/eng/faa/v43/i1/p55
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
F. L. Bakharev, S. A. Nazarov, “On the structure of the spectrum for the elasticity problem in a body with a supersharp spike”, Siberian Math. J., 50:4 (2009), 587–595
-
S. A. Nazarov, “An example of multiple gaps in the spectrum of a periodic waveguide”, Sb. Math., 201:4 (2010), 569–594
-
Nazarov S.A., Taskinen J., “On essential and continuous spectra of the linearized water-wave problem in a finite pond”, Math. Scand., 106:1 (2010), 141–160
-
Campbell A., Nazarov S.A., Sweers G.H., “Spectra of two-dimensional models for thin plates with sharp edges”, SIAM J. Math. Anal., 42:6 (2010), 3020–3044
-
Nazarov S.A., Taskinen J., “Radiation conditions at the top of a rotational cusp in the theory of water-waves”, ESAIM Math. Model. Numer. Anal., 45:5 (2011), 947–979
-
A. I. Noarov, “Existence and nonuniqueness of solutions to a functional-differential equation”, Siberian Math. J., 53:6 (2012), 1115–1118
-
Kamotski I.V., Maz'ya V.G., “On the linear water wave problem in the presence of a critically submerged body”, SIAM J. Math. Anal., 44:6 (2012), 4222–4249
-
Martin J., “On Continuous Spectrum of the Linearised Water-Wave Problem in Bounded Domains”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 38:2 (2013), 413–431
-
A.I. Noarov, “A system of elliptic equations for probability measures”, Dokl. Math., 90:2 (2014), 529–534
-
Kozlov V., Nazarov S.A., “on the Spectrum of An Elastic Solid With Cusps”, Adv. Differ. Equat., 21:9-10 (2016), 887–944
-
Eismontaite A. Pileckas K., “On Singular Solutions of Time-Periodic and Steady Stokes Problems in a Power Cusp Domain”, Appl. Anal., 97:3 (2018), 415–437
|
Number of views: |
This page: | 413 | Full text: | 187 | References: | 74 | First page: | 15 |
|