RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2009, Volume 43, Issue 1, Pages 22–36 (Mi faa2940)  

This article is cited in 5 scientific papers (total in 5 papers)

Equivariant Cohomology and Localization for Lie Algebroids

U. Bruzzoab, L. Cirioab, P. Rossib, V. N. Rubtsovcd

a Scuola Internazionale Superiore di Studi Avanzati, Trieste
b Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
c Institute for Theoretical and Experimental Physics, Moscow
d Université d'Angers, Département de Mathématiques

Abstract: Let $M$ be a manifold carrying the action of a Lie group $G$, and let $A$ be a Lie algebroid on $M$ equipped with a compatible infinitesimal $G$-action. Using these data, we construct an equivariant cohomology of $A$ and prove a related localization formula for the case of compact $G$. By way of application, we prove an analog of the Bott formula.

Keywords: Lie algebroid, equivariant cohomology, localization formula

DOI: https://doi.org/10.4213/faa2940

Full text: PDF file (285 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2009, 43:1, 18–29

Bibliographic databases:

UDC: 514.762.32
Received: 17.01.2006
Revised: 28.06.2008

Citation: U. Bruzzo, L. Cirio, P. Rossi, V. N. Rubtsov, “Equivariant Cohomology and Localization for Lie Algebroids”, Funktsional. Anal. i Prilozhen., 43:1 (2009), 22–36; Funct. Anal. Appl., 43:1 (2009), 18–29

Citation in format AMSBIB
\Bibitem{BruCirRos09}
\by U.~Bruzzo, L.~Cirio, P.~Rossi, V.~N.~Rubtsov
\paper Equivariant Cohomology and Localization for Lie Algebroids
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 1
\pages 22--36
\mathnet{http://mi.mathnet.ru/faa2940}
\crossref{https://doi.org/10.4213/faa2940}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2503863}
\zmath{https://zbmath.org/?q=an:1271.53073}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 1
\pages 18--29
\crossref{https://doi.org/10.1007/s10688-009-0003-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000264264100003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62749175710}


Linking options:
  • http://mi.mathnet.ru/eng/faa2940
  • https://doi.org/10.4213/faa2940
  • http://mi.mathnet.ru/eng/faa/v43/i1/p22

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Huebschmann J., “Equivariant cohomology over Lie groupoids and Lie-Rinehart algebras”, Lett. Math. Phys., 90:1-3 (2009), 201–251  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Mehta R.A., “$Q$-groupoids and their cohomology”, Pacific J. Math., 242:2 (2009), 311–332  crossref  mathscinet  zmath  isi  scopus
    3. Bruzzo U., Rubtsov V., “On localization in holomorphic equivariant cohomology”, Cent. Eur. J. Math., 10:4 (2012), 1442–1454  crossref  mathscinet  zmath  isi  elib  scopus
    4. Salnikov V., Strobl T., “Dirac SIGMA Models From Gauging”, J. High Energy Phys., 2013, no. 11, 110  crossref  isi  scopus
    5. Salnikov V., “Graded Geometry in Gauge Theories and Beyond”, J. Geom. Phys., 87 (2015), 422–431  crossref  mathscinet  zmath  adsnasa  isi  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:327
    Full text:83
    References:44
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019