RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2010, Volume 44, Issue 3, Pages 14–26 (Mi faa2993)  

This article is cited in 6 scientific papers (total in 6 papers)

Periodic Boundary Value Problem for Nonlinear Sobolev-Type Equations

E. I. Kaikinaa, P. I. Naumkina, I. A. Shishmarevb

a National Autonomous University of Mexico
b M. V. Lomonosov Moscow State University

Abstract: The large-time asymptotic behavior of solutions to the periodic boundary value problem for a nonlinear Sobolev-type equation is studied. In particular, the case where the initial perturbations are not small is considered. In this case, the large-time behavior of solutions is dichotomous.

Keywords: periodic boundary value problem, Sobolev-type equation, asymptotic behavior.

DOI: https://doi.org/10.4213/faa2993

Full text: PDF file (213 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2010, 44:3, 171–181

Bibliographic databases:

UDC: 517.9+535.5
Received: 20.04.2009

Citation: E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “Periodic Boundary Value Problem for Nonlinear Sobolev-Type Equations”, Funktsional. Anal. i Prilozhen., 44:3 (2010), 14–26; Funct. Anal. Appl., 44:3 (2010), 171–181

Citation in format AMSBIB
\Bibitem{KaiNauShi10}
\by E.~I.~Kaikina, P.~I.~Naumkin, I.~A.~Shishmarev
\paper Periodic Boundary Value Problem for Nonlinear Sobolev-Type Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 3
\pages 14--26
\mathnet{http://mi.mathnet.ru/faa2993}
\crossref{https://doi.org/10.4213/faa2993}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2760511}
\zmath{https://zbmath.org/?q=an:1271.35051}
\elib{http://elibrary.ru/item.asp?id=15333342}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 3
\pages 171--181
\crossref{https://doi.org/10.1007/s10688-010-0022-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000282097300002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957054021}


Linking options:
  • http://mi.mathnet.ru/eng/faa2993
  • https://doi.org/10.4213/faa2993
  • http://mi.mathnet.ru/eng/faa/v44/i3/p14

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Cao Ya., Yin J., Jin Ch., “A periodic problem of a semilinear pseudoparabolic equation”, Abstr. Appl. Anal., 2011, 363579, 27 pp.  mathscinet  zmath  isi  elib
    2. Di Huafei, Shang Yadong, “Blow-up of solutions for a class of nonlinear pseudoparabolic equations with a memory term”, Abstract Appl. Anal., 2014, 507494, 7 pp.  crossref  mathscinet  isi  scopus
    3. Li Yinghua, Cao Yang, “Time Periodic Solutions For a Pseudo-Parabolic Type Equation With Weakly Nonlinear Periodic Sources”, Bull. Malays. Math. Sci. Soc., 38:2 (2015), 667–682  crossref  mathscinet  zmath  isi  scopus
    4. Li Zh., Du W., “Cauchy Problems of Pseudo-Parabolic Equations With Inhomogeneous Terms”, Z. Angew. Math. Phys., 66:6 (2015), 3181–3203  crossref  mathscinet  zmath  isi  elib  scopus
    5. Di H., Shang Ya., “Global Existence and Nonexistence of Solutions For the Nonlinear Pseudo-Parabolic Equation With a Memory Term”, Math. Meth. Appl. Sci., 38:17 (2015), 3923–3936  crossref  mathscinet  zmath  isi  scopus
    6. Di H., Shang Ya., Zheng X., “Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms”, Discrete Contin. Dyn. Syst.-Ser. B, 21:3 (2016), 781–801  crossref  mathscinet  zmath  isi  elib  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:313
    Full text:105
    References:41
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020