RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2005, Volume 39, Issue 1, Pages 39–55 (Mi faa30)  

This article is cited in 8 scientific papers (total in 8 papers)

Two-Particle Bound State Spectrum of Transfer Matrices for Gibbs Fields (Fields on the Two-Dimensional Lattice. Adjacent Levels)

E. L. Lakshtanova, R. A. Minlosb

a M. V. Lomonosov Moscow State University
b Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: This paper is a continuation of the authors' paper published in no. 3 of this journal in the previous year, where a detailed statement of the problem on the two-particle bound state spectrum of transfer matrices was given for a wide class of Gibbs fields on the lattice $\mathbb Z^{\nu+1}$ in the high-temperature region $(T \gg 1)$. In the present paper, it is shown that for $\nu=1$ the so-called “adjacent” bound state levels (i.e., those lying at distances of the order of $T^{-\alpha}$, $\alpha>2$, from the continuous spectrum) can appear only for values of the total quasimomentum $\Lambda$ of the system that satisfy the condition $|\Lambda-\Lambda_j^{\textup{mult}}|< c/T^2$ (here $c$ is a constant), where $\Lambda_j^{\textup{mult}}$ are the quasimomentum values for which the symbol $\{\omega_\Lambda(k), k \in \mathbb T^1\}$ has two coincident extrema. Conditions under which such levels actually appear are also presented.

Keywords: transfer matrices, bound state, Fredholm operator, total quasimomentum, adjacent level

DOI: https://doi.org/10.4213/faa30

Full text: PDF file (297 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2005, 39:1, 31–45

Bibliographic databases:

UDC: 517.9
Received: 19.03.2003

Citation: E. L. Lakshtanov, R. A. Minlos, “Two-Particle Bound State Spectrum of Transfer Matrices for Gibbs Fields (Fields on the Two-Dimensional Lattice. Adjacent Levels)”, Funktsional. Anal. i Prilozhen., 39:1 (2005), 39–55; Funct. Anal. Appl., 39:1 (2005), 31–45

Citation in format AMSBIB
\Bibitem{LakMin05}
\by E.~L.~Lakshtanov, R.~A.~Minlos
\paper Two-Particle Bound State Spectrum of Transfer Matrices for Gibbs Fields (Fields on the Two-Dimensional Lattice. Adjacent Levels)
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 1
\pages 39--55
\mathnet{http://mi.mathnet.ru/faa30}
\crossref{https://doi.org/10.4213/faa30}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2132438}
\zmath{https://zbmath.org/?q=an:1127.82036}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 1
\pages 31--45
\crossref{https://doi.org/10.1007/s10688-005-0015-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000229257700004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18144418576}


Linking options:
  • http://mi.mathnet.ru/eng/faa30
  • https://doi.org/10.4213/faa30
  • http://mi.mathnet.ru/eng/faa/v39/i1/p39

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. I. Muminov, “Positivity of the two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 153:3 (2007), 1671–1676  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Albeverio S., Lakaev S.N., Muminov Z.I., “The threshold effects for a family of Friedrichs models under rank one perturbations”, J. Math. Anal. Appl., 330:2 (2007), 1152–1168  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. S. N. Lakaev, I. N. Bozorov, “The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice”, Theoret. and Math. Phys., 158:3 (2009), 360–376  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. S. N. Lakaev, Sh. Yu. Kholmatov, “Asymptotics of the eigenvalues of a discrete Schrödinger operator with zero-range potential”, Izv. Math., 76:5 (2012), 946–966  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. M. I. Muminov, A. M. Hurramov, “Spectral properties of a two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 177:3 (2013), 1693–1705  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. M. I. Muminov, A. M. Hurramov, “Multiplicity of virtual levels at the lower edge of the continuous spectrum of a two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 180:3 (2014), 1040–1050  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    7. M. E. Muminov, A. M. Khurramov, “Spectral properties of two particle Hamiltonian on one-dimensional lattice”, Ufa Math. J., 6:4 (2014), 99–107  mathnet  crossref
    8. Muminov M.I., Khurramov A.M., “Spectral properties of a two-particle Hamiltonian on a d-dimensional lattice”, Nanosyst.-Phys. Chem. Math., 7:5 (2016), 880–887  crossref  zmath  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:863
    Full text:113
    References:69
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020