|
This article is cited in 3 scientific papers (total in 3 papers)
Brief communications
On the Spectrum of the Robin Problem in a Domain with a Peak
S. A. Nazarova, Ya. Taskinenb a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
b University of Helsinki
Abstract:
A formally self-adjoint Robin–Laplace problem in a peak-shaped domain is considered. The associated
quadratic form is not semi-bounded, which is proved to lead to a pathological structure of the spectrum of the corresponding operator. Namely, the residual spectrum of the operator itself and the point spectrum of its adjoint cover the whole complex plane. The operator is not self-adjoint, and the (discrete) spectrum of any of its self-adjoint extensions is not semi-bounded.
Keywords:
Robin condition, third boundary value problem, peak, cusp, spectrum, asymptotics, self-adjoint extension
DOI:
https://doi.org/10.4213/faa3020
Full text:
PDF file (193 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 2011, 45:1, 77–79
Bibliographic databases:
UDC:
517.923+517.956.227 Received: 19.08.2009
Citation:
S. A. Nazarov, Ya. Taskinen, “On the Spectrum of the Robin Problem in a Domain with a Peak”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 93–96; Funct. Anal. Appl., 45:1 (2011), 77–79
Citation in format AMSBIB
\Bibitem{NazTas11}
\by S.~A.~Nazarov, Ya.~Taskinen
\paper On the Spectrum of the Robin Problem in a Domain with a Peak
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 1
\pages 93--96
\mathnet{http://mi.mathnet.ru/faa3020}
\crossref{https://doi.org/10.4213/faa3020}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2848745}
\zmath{https://zbmath.org/?q=an:1271.35056}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 1
\pages 77--79
\crossref{https://doi.org/10.1007/s10688-011-0010-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288557800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952796676}
Linking options:
http://mi.mathnet.ru/eng/faa3020https://doi.org/10.4213/faa3020 http://mi.mathnet.ru/eng/faa/v45/i1/p93
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Kamotski I.V. Maz'ya V.G., “On the linear water wave problem in the presence of a critically submerged body”, SIAM J. Math. Anal., 44:6 (2012), 4222–4249
-
Daners D., “Principal Eigenvalues for Generalised Indefinite Robin Problems”, Potential Anal., 38:4 (2013), 1047–1069
-
Bruneau V., Popoff N., “On the negative spectrum of the Robin Laplacian in corner domains”, Anal. PDE, 9:5 (2016), 1259–1283
|
Number of views: |
This page: | 268 | Full text: | 112 | References: | 45 | First page: | 11 |
|