|
This article is cited in 8 scientific papers (total in 8 papers)
Unitary Equivalence of Representations of Graph Algebras and Branching Systems
D. Goncalves, D. Royer Departamento de Matematica, Universidade Federal de Santa Catarina, Brazil
Abstract:
It is shown that, for many countable graphs, every representation of the associated graph algebra in a separable Hilbert space is unitarily equivalent to a representation obtained via branching systems.
Keywords:
graph $C^*$-algebras, representation theory, unitary equivalence
DOI:
https://doi.org/10.4213/faa3033
Full text:
PDF file (265 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 2011, 45:2, 117–127
Bibliographic databases:
UDC:
512.552.8+517.98 Received: 11.01.2010
Citation:
D. Goncalves, D. Royer, “Unitary Equivalence of Representations of Graph Algebras and Branching Systems”, Funktsional. Anal. i Prilozhen., 45:2 (2011), 45–59; Funct. Anal. Appl., 45:2 (2011), 117–127
Citation in format AMSBIB
\Bibitem{GonRoy11}
\by D.~Goncalves, D.~Royer
\paper Unitary Equivalence of Representations of Graph Algebras and Branching Systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 2
\pages 45--59
\mathnet{http://mi.mathnet.ru/faa3033}
\crossref{https://doi.org/10.4213/faa3033}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2848777}
\zmath{https://zbmath.org/?q=an:1271.46043}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 2
\pages 117--127
\crossref{https://doi.org/10.1007/s10688-011-0013-x}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298226000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958716538}
Linking options:
http://mi.mathnet.ru/eng/faa3033https://doi.org/10.4213/faa3033 http://mi.mathnet.ru/eng/faa/v45/i2/p45
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Gonçalves D., Royer D., “Graph $\mathrm{C}^*$-algebras, branching systems and the Perron-Frobenius operator”, J. Math. Anal. Appl., 391:2 (2012), 457–465
-
Goncalves D., Royer D., “Branching Systems and Representations of Cohn-Leavitt Path Algebras of Separated Graphs”, J. Algebra, 422 (2015), 413–426
-
Goncalves D., Li H., Royer D., “Faithful Representations of Graph Algebras Via Branching Systems”, Can. Math. Bul.-Bul. Can. Math., 59:1 (2016), 95–103
-
Goncalves D., Li H., Royer D., “Branching systems and general Cuntz–Krieger uniqueness theorem for ultragraph $C ^{*}$-algebras”, Int. J. Math., 27:10 (2016), 1650083
-
Goncalves D., Yoneda G., “Free path groupoid grading on Leavitt path algebras”, Int. J. Algebr. Comput., 26:6 (2016), 1217–1235
-
Hazrat R., Rangaswamy K.M., “On graded irreducible representations of Leavitt path algebras”, J. Algebra, 450 (2016), 458–486
-
Goncalves D., Li H., Royer D., “Branching Systems For Higher-Rank Graph $C^*$-Algebras”, Glasg. Math. J., 60:3 (2018), 731–751
-
Ramos C.C., Martins N., Pinto P.R., “On Graph Algebras From Interval Maps”, Ann. Funct. Anal., 10:2 (2019), 203–217
|
Number of views: |
This page: | 260 | Full text: | 104 | References: | 36 | First page: | 6 |
|