RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2011, Volume 45, Issue 2, Pages 45–59 (Mi faa3033)  

This article is cited in 8 scientific papers (total in 8 papers)

Unitary Equivalence of Representations of Graph Algebras and Branching Systems

D. Goncalves, D. Royer

Departamento de Matematica, Universidade Federal de Santa Catarina, Brazil

Abstract: It is shown that, for many countable graphs, every representation of the associated graph algebra in a separable Hilbert space is unitarily equivalent to a representation obtained via branching systems.

Keywords: graph $C^*$-algebras, representation theory, unitary equivalence

DOI: https://doi.org/10.4213/faa3033

Full text: PDF file (265 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2011, 45:2, 117–127

Bibliographic databases:

UDC: 512.552.8+517.98
Received: 11.01.2010

Citation: D. Goncalves, D. Royer, “Unitary Equivalence of Representations of Graph Algebras and Branching Systems”, Funktsional. Anal. i Prilozhen., 45:2 (2011), 45–59; Funct. Anal. Appl., 45:2 (2011), 117–127

Citation in format AMSBIB
\Bibitem{GonRoy11}
\by D.~Goncalves, D.~Royer
\paper Unitary Equivalence of Representations of Graph Algebras and Branching Systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 2
\pages 45--59
\mathnet{http://mi.mathnet.ru/faa3033}
\crossref{https://doi.org/10.4213/faa3033}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2848777}
\zmath{https://zbmath.org/?q=an:1271.46043}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 2
\pages 117--127
\crossref{https://doi.org/10.1007/s10688-011-0013-x}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298226000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958716538}


Linking options:
  • http://mi.mathnet.ru/eng/faa3033
  • https://doi.org/10.4213/faa3033
  • http://mi.mathnet.ru/eng/faa/v45/i2/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gonçalves D., Royer D., “Graph $\mathrm{C}^*$-algebras, branching systems and the Perron-Frobenius operator”, J. Math. Anal. Appl., 391:2 (2012), 457–465  crossref  mathscinet  zmath  isi  scopus
    2. Goncalves D., Royer D., “Branching Systems and Representations of Cohn-Leavitt Path Algebras of Separated Graphs”, J. Algebra, 422 (2015), 413–426  crossref  mathscinet  zmath  isi  scopus
    3. Goncalves D., Li H., Royer D., “Faithful Representations of Graph Algebras Via Branching Systems”, Can. Math. Bul.-Bul. Can. Math., 59:1 (2016), 95–103  crossref  mathscinet  zmath  isi  scopus
    4. Goncalves D., Li H., Royer D., “Branching systems and general Cuntz–Krieger uniqueness theorem for ultragraph $C ^{*}$-algebras”, Int. J. Math., 27:10 (2016), 1650083  crossref  mathscinet  zmath  isi  scopus
    5. Goncalves D., Yoneda G., “Free path groupoid grading on Leavitt path algebras”, Int. J. Algebr. Comput., 26:6 (2016), 1217–1235  crossref  mathscinet  zmath  isi  scopus
    6. Hazrat R., Rangaswamy K.M., “On graded irreducible representations of Leavitt path algebras”, J. Algebra, 450 (2016), 458–486  crossref  mathscinet  zmath  isi  scopus
    7. Goncalves D., Li H., Royer D., “Branching Systems For Higher-Rank Graph $C^*$-Algebras”, Glasg. Math. J., 60:3 (2018), 731–751  crossref  mathscinet  zmath  isi  scopus
    8. Ramos C.C., Martins N., Pinto P.R., “On Graph Algebras From Interval Maps”, Ann. Funct. Anal., 10:2 (2019), 203–217  crossref  mathscinet  isi  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:260
    Full text:104
    References:36
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021