RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2012, Volume 46, Issue 1, Pages 31–38 (Mi faa3052)  

This article is cited in 3 scientific papers (total in 3 papers)

Relative Version of the Titchmarsh Convolution Theorem

E. A. Gorina, D. V. Treschevb

a Moscow State (V. I. Lenin) Pedagogical Institute
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We consider the algebra $C_u=C_u(\mathbb{R})$ of uniformly continuous bounded complex functions on the real line $\mathbb{R}$ with pointwise operations and $\sup$-norm. Let $I$ be a closed ideal in $C_u$ invariant with respect to translations, and let $\operatorname{ah}_I(f)$ denote the minimal real number (if it exists) satisfying the following condition. If $\lambda>\operatorname{ah}_I(f)$, then $(\hat f - \hat g)|_V=0$ for some $g\in I$, where $V$ is a neighborhood of the point $\lambda$. The classical Titchmarsh convolution theorem is equivalent to the equality $\operatorname{ah}_I(f_1\cdot f_2)=\operatorname{ah}_I(f_1)+\operatorname{ah}_I(f_2)$, where $I = \{0\}$. We show that, for ideals $I$ of general form, this equality does not generally hold, but $\operatorname{ah}_I(f^n)=n\cdot\operatorname{ah}_I(f)$ holds for any $I$. We present many nontrivial ideals for which the general form of the Titchmarsh theorem is true.

Keywords: Titchmarsh's convolution theorem, estimation of entire functions, Banach algebra

Funding Agency Grant Number
Russian Academy of Sciences - Federal Agency for Scientific Organizations


DOI: https://doi.org/10.4213/faa3052

Full text: PDF file (190 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2012, 46:1, 26–32

Bibliographic databases:

Document Type: Article
UDC: 517.987+517.51+517.53
Received: 28.03.2011

Citation: E. A. Gorin, D. V. Treschev, “Relative Version of the Titchmarsh Convolution Theorem”, Funktsional. Anal. i Prilozhen., 46:1 (2012), 31–38; Funct. Anal. Appl., 46:1 (2012), 26–32

Citation in format AMSBIB
\Bibitem{GorTre12}
\by E.~A.~Gorin, D.~V.~Treschev
\paper Relative Version of the Titchmarsh Convolution Theorem
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 1
\pages 31--38
\mathnet{http://mi.mathnet.ru/faa3052}
\crossref{https://doi.org/10.4213/faa3052}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2961738}
\zmath{https://zbmath.org/?q=an:06207339}
\elib{http://elibrary.ru/item.asp?id=20730639}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 1
\pages 26--32
\crossref{https://doi.org/10.1007/s10688-012-0003-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000301599600003}
\elib{http://elibrary.ru/item.asp?id=17980385}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858376028}


Linking options:
  • http://mi.mathnet.ru/eng/faa3052
  • https://doi.org/10.4213/faa3052
  • http://mi.mathnet.ru/eng/faa/v46/i1/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Dymov, “Dissipative effects in a linear Lagrangian system with infinitely many degrees of freedom”, Izv. Math., 76:6 (2012), 1116–1149  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. S. M. Saulin, “Dissipation effects in infinite-dimensional Hamiltonian systems.”, Theoret. and Math. Phys., 191:1 (2017), 537–557  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Dymov A.V., “Asymptotic Behavior of a Network of Oscillators Coupled to Thermostats of Finite Energy”, Russ. J. Math. Phys., 25:2 (2018), 183–199  crossref  mathscinet  isi  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:430
    Full text:72
    References:71
    First page:50

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018