RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2011, Volume 45, Issue 4, Pages 65–71 (Mi faa3054)  

This article is cited in 6 scientific papers (total in 6 papers)

Volkov pentagon for the modular quantum dilogarithm

L. D. Faddeev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, St. Petersburg, Russia

Abstract: The new form of pentagon equations suggested by Volkov (Int. Math. Res. Notices (2011); http://arxiv.org/abs/1104.2267) for the $q$-exponential on the basis of formal series is derived within the Hilbert space framework for the modular version of the quantum dilogarithm.

Keywords: pentagon equations, $q$-exponential, quantum dilogarithm.

DOI: https://doi.org/10.4213/faa3054

Full text: PDF file (155 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2011, 45:4, 291–296

Bibliographic databases:

Document Type: Article
UDC: 517.98
Received: 17.10.2011

Citation: L. D. Faddeev, “Volkov pentagon for the modular quantum dilogarithm”, Funktsional. Anal. i Prilozhen., 45:4 (2011), 65–71; Funct. Anal. Appl., 45:4 (2011), 291–296

Citation in format AMSBIB
\Bibitem{Fad11}
\by L.~D.~Faddeev
\paper Volkov pentagon for the modular quantum dilogarithm
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 4
\pages 65--71
\mathnet{http://mi.mathnet.ru/faa3054}
\crossref{https://doi.org/10.4213/faa3054}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2961481}
\zmath{https://zbmath.org/?q=an:1271.33001}
\elib{http://elibrary.ru/item.asp?id=20730634}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 4
\pages 291--296
\crossref{https://doi.org/10.1007/s10688-011-0031-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298226300006}
\elib{http://elibrary.ru/item.asp?id=18024890}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83455211501}


Linking options:
  • http://mi.mathnet.ru/eng/faa3054
  • https://doi.org/10.4213/faa3054
  • http://mi.mathnet.ru/eng/faa/v45/i4/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R.L. Mkrtchyan, “Universal Chern–Simons Partition Functions as Quadruple Barnes' Gamma-Functions”, J. High Energy Phys., 2013, no. 10, 190  crossref  mathscinet  zmath  isi  elib  scopus
    2. R.L. Mkrtchyan, “On a Gopakumar-Vafa form of partition function of Chern–Simons theory on classical and exceptional lines”, J. High Energy Phys., 2014, no. 12, 171, 27 pp.  crossref  mathscinet  zmath  isi  scopus
    3. Krefl D., Mkrtchyan R.L., “Exact Chern–Simons / Topological String Duality”, J. High Energy Phys., 2015, no. 10, 045  crossref  mathscinet  isi  elib  scopus
    4. Alexandrov S., Pioline B., “Theta Series, Wall-Crossing and Quantum Dilogarithm Identities”, Lett. Math. Phys., 106:8 (2016), 1037–1066  crossref  mathscinet  zmath  isi  scopus
    5. Chang Ch.-M., Fluder M., Lin Y.-H., Wang Y., “Spheres, Charges, Instantons, and Bootstrap: a Five-Dimensional Odyssey”, J. High Energy Phys., 2018, no. 3, 123  crossref  mathscinet  isi  scopus
    6. D. N. Bozkurt, I. B. Gahramanov, “Pentagon identities arising in supersymmetric gauge theory computations”, Theoret. and Math. Phys., 198:2 (2019), 189–196  mathnet  crossref  crossref  adsnasa  isi  elib
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:503
    Full text:121
    References:83
    First page:72

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019