|
This article is cited in 20 scientific papers (total in 20 papers)
Brief communications
Quasi-Contractions on a Nonnormal Cone Metric Space
L. Gajića, V. Rakočevićb a University of Novi Sad
b University of Nis, Faculty of Sciences and Mathematics
Abstract:
Ilić and Rakočević [Appl. Math. Lett., 22:5 (2009), 728–731] proved a fixed point theorem for quasi-contractive mappings on cone metric spaces when the underlying cone is normal. Recently, Z. Kadelburg, S. Radenović, and V. Rakočević obtained a similar result without using the normality condition but only for a contractive constant $\lambda\in(0,1/2)$ [Appl. Math. Lett., 22:11 (2009), 1674–1679]. In this note, using a new method of proof, we prove this theorem for any contractive constant $\lambda \in (0,1)$.
Keywords:
fixed point, cone metric space, quasi-contraction
DOI:
https://doi.org/10.4213/faa3057
Full text:
PDF file (161 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 2012, 46:1
Bibliographic databases:
UDC:
517.988 Received: 18.04.2010
Citation:
L. Gajić, V. Rakočević, “Quasi-Contractions on a Nonnormal Cone Metric Space”, Funktsional. Anal. i Prilozhen., 46:1 (2012), 75–79
Citation in format AMSBIB
\Bibitem{GajRak12}
\by L.~Gaji\'c, V.~Rakočevi\'c
\paper Quasi-Contractions on a Nonnormal Cone Metric Space
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 1
\pages 75--79
\mathnet{http://mi.mathnet.ru/faa3057}
\crossref{https://doi.org/10.4213/faa3057}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2961743}
\zmath{https://zbmath.org/?q=an:06207344}
\elib{https://elibrary.ru/item.asp?id=20730644}
Linking options:
http://mi.mathnet.ru/eng/faa3057https://doi.org/10.4213/faa3057 http://mi.mathnet.ru/eng/faa/v46/i1/p75
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Liu Hao, Xu Shaoyuan, “Fixed point theorems of quasicontractions on cone metric spaces with Banach algebras”, Abstract Appl. Anal., 2013, 187348, 5 pp.
-
Shi Lu, Xu Shaoyuan, “Common fixed point theorems for two weakly compatible self-mappings in cone $b$-metric spaces”, Fixed Point Theory Appl., 2013, 120, 11 pp.
-
M. Abbas, M. Arshad, A. Azam, “Fixed points of asymptotically regular mappings in complex-valued metric spaces”, Georgian Math. J., 20:2 (2013), 213–221
-
M. Cvetković, V. Rakočević, “Quasi-contraction of Perov type”, Appl. Math. Comput., 237 (2014), 712–722
-
P. D. Proinov, I. A. Nikolova, “Iterative approximation of fixed points of quasi-contraction mappings in cone metric spaces”, J. Inequal. Appl., 2014 (2014), 226, 14 pp.
-
Shaoyuan Xu, Stojan Radenović, “Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality”, Fixed Point Theory Appl., 2014, 102, 12 pp.
-
M. Cvetković, V. Rakočević, “Fisher quasi-contraction of Perov type”, J. Nonlinear Convex Anal., 16:2 (2015), 339–352
-
M. Cvetković, V. Rakočević, “Common fixed point results for mappings of Perov type”, Math. Nachr., 288:16 (2015), 1873–1890
-
M. Cvetković, V. Rakočević, “Extensions of Perov theorem”, Carpathian J. Math., 31:2 (2015), 181–188
-
H. Huang, Sh. Xu, H. Liu, S. Radenović, “Fixed point theorems and $T$-stability of Picard iteration for generalized Lipschitz mappings in cone metric spaces over Banach algebras”, J. Comput. Anal. Appl., 20:5 (2016), 869–888
-
D. Ilić, M. Cvetković, L. Gajić, V. Rakočević, “Fixed points of sequence of Ćirić generalized contractions of Perov type”, Mediterr. J. Math., 13:6 (2016), 3921–3937
-
M. Cvetković, “Operatorial contractions on solid cone metric spaces”, J. Nonlinear Convex Anal., 17:7 (2016), 1399–1408
-
J. Yin, Q. Yan, T. Wang, L. Liu, “Tripled coincidence points for mixed comparable mappings in partially ordered cone metric spaces over Banach algebras”, J. Nonlinear Sci. Appl., 9:4 (2016), 1590–1599
-
H. Huang, S. Radenović, G. Deng, “A sharp generalization on cone $b$-metric space over Banach algebra”, J. Nonlinear Sci. Appl., 10:2 (2017), 429–435
-
Sh. Xu, B. Z. Popović, S. Radenović, “Fixed point results for generalized $g$-quasi-contractions of Perov-type in cone metric spaces over Banach algebras without the assumption of normality”, J. Comput. Anal. Appl., 22:4 (2017), 648–671
-
S. Radenović, F. Vetro, “Some remarks on Perov type mappings in cone metric spaces”, Mediterr. J. Math., 14:6 (2017), UNSP 240, 15 pp.
-
Sh. Xu, S. Chen, S. Aleksić, “Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications”, Int. J. Nonlinear Anal. Appl., 8:2 (2017), 335–353
-
M. Cvetković, “On the equivalence between Perov fixed point theorem and Banach contraction principle”, Filomat, 31:11, SI (2017), 3137–3146
-
S. M. Aghayan, A. Zireh, A. Ebadian, “Common best proximity point theorems on cone $b$-metric spaces over Banach algebras”, Gazi U. J. Sci., 30:2 (2017), 159–172
-
G. Wu, L. Yang, “Some fixed point theorems on cone 2-metric spaces over Banach algebras”, J. Fixed Point Theory Appl., 20:3 (2018), UNSP 108, 19 pp.
|
Number of views: |
This page: | 382 | Full text: | 104 | References: | 54 | First page: | 13 |
|