Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2012, Volume 46, Issue 2, Pages 37–51 (Mi faa3066)  

This article is cited in 3 scientific papers (total in 4 papers)

Real Normalized Differentials and Arbarello's Conjecture

I. M. Kricheverabc

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
b Columbia University
c L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: Using meromorphic differentials with real periods, we prove Arbarello's conjecture that any compact complex cycle of dimension $g-n$ in the moduli space $\mathcal{M}_g$ of smooth algebraic curves of genus $g$ must intersect the locus of curves having a Weierstrass point of order at most $n$.

Keywords: moduli space of algebraic curves, integrable system, real normalized differential

DOI: https://doi.org/10.4213/faa3066

Full text: PDF file (239 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2012, 46:2, 110–120

Bibliographic databases:

UDC: 512.732+517.9
Received: 16.01.2012

Citation: I. M. Krichever, “Real Normalized Differentials and Arbarello's Conjecture”, Funktsional. Anal. i Prilozhen., 46:2 (2012), 37–51; Funct. Anal. Appl., 46:2 (2012), 110–120

Citation in format AMSBIB
\Bibitem{Kri12}
\by I.~M.~Krichever
\paper Real Normalized Differentials and Arbarello's Conjecture
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 2
\pages 37--51
\mathnet{http://mi.mathnet.ru/faa3066}
\crossref{https://doi.org/10.4213/faa3066}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2978059}
\zmath{https://zbmath.org/?q=an:06207353}
\elib{https://elibrary.ru/item.asp?id=20730652}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 2
\pages 110--120
\crossref{https://doi.org/10.1007/s10688-012-0017-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000305412000004}
\elib{https://elibrary.ru/item.asp?id=17992058}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862519729}


Linking options:
  • http://mi.mathnet.ru/eng/faa3066
  • https://doi.org/10.4213/faa3066
  • http://mi.mathnet.ru/eng/faa/v46/i2/p37

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Khovanskii, “On Algebraic Functions Integrable in Finite Terms”, Funct. Anal. Appl., 49:1 (2015), 50–56  mathnet  crossref  crossref  zmath  isi  elib
    2. A. Y. Buryak, “New approaches to integrable hierarchies of topological type”, Russian Math. Surveys, 72:5 (2017), 841–887  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. S. Grushevsky, I. M. Krichever, Ch. Norton, “Real-normalized differentials: limits on stable curves”, Russian Math. Surveys, 74:2 (2019), 265–324  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. V. M. Buchstaber, A. N. Varchenko, A. P. Veselov, P. G. Grinevich, S. Grushevsky, S. Yu. Dobrokhotov, A. V. Zabrodin, A. V. Marshakov, A. E. Mironov, N. A. Nekrasov, S. P. Novikov, A. Yu. Okounkov, M. A. Olshanetsky, A. K. Pogrebkov, I. A. Taimanov, M. A. Tsfasman, L. O. Chekhov, O. K. Sheinman, S. B. Shlosman, “Igor' Moiseevich Krichever (on his 70th birthday)”, Russian Math. Surveys, 76:4 (2021), 733–743  mathnet  crossref  crossref  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:632
    Full text:185
    References:46
    First page:48

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021