|
This article is cited in 10 scientific papers (total in 10 papers)
Brief communications
Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm
M. A. Pakhnin, T. A. Suslina St. Petersburg State University, Faculty of Physics
Abstract:
Let $\mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with boundary of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, consider a matrix elliptic second-order differential operator $A_{D,\varepsilon}$ with Dirichlet boundary condition. Here $\varepsilon >\nobreak0$ is a small parameter; the coefficients of $A_{D,\varepsilon}$ are periodic and depend on $\mathbf{x}/\varepsilon$. The operator $A_{D,\varepsilon}^{-1}$ in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev space $H^1(\mathcal{O};\mathbb{C}^n)$ is approximated with an error of order $\varepsilon^{1/2}$. The approximation is given by the sum of the operator $(A^0_D)^{-1}$ and a first-order corrector. Here $A^0_D$ is an effective operator with constant coefficients and Dirichlet boundary condition.
Keywords:
homogenization of periodic differential operators, effective operator, corrector, operator error estimates
DOI:
https://doi.org/10.4213/faa3071
Full text:
PDF file (176 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 2012, 46:2, 155–159
Bibliographic databases:
UDC:
517.956.2 Received: 18.01.2012
Citation:
M. A. Pakhnin, T. A. Suslina, “Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm”, Funktsional. Anal. i Prilozhen., 46:2 (2012), 92–96; Funct. Anal. Appl., 46:2 (2012), 155–159
Citation in format AMSBIB
\Bibitem{PakSus12}
\by M.~A.~Pakhnin, T.~A.~Suslina
\paper Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 2
\pages 92--96
\mathnet{http://mi.mathnet.ru/faa3071}
\crossref{https://doi.org/10.4213/faa3071}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2978064}
\zmath{https://zbmath.org/?q=an:1273.47078}
\elib{https://elibrary.ru/item.asp?id=20730657}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 2
\pages 155--159
\crossref{https://doi.org/10.1007/s10688-012-0022-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000305412000009}
\elib{https://elibrary.ru/item.asp?id=17992053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862518395}
Linking options:
http://mi.mathnet.ru/eng/faa3071https://doi.org/10.4213/faa3071 http://mi.mathnet.ru/eng/faa/v46/i2/p92
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
M. A. Pakhnin, T. A. Suslina, “Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm”, Funct. Anal. Appl., 46:2 (2012), 155–159
-
T. A. Suslina, “Operator Error Estimates in $L_2$ for Homogenization of an Elliptic Dirichlet Problem”, Funct. Anal. Appl., 46:3 (2012), 234–238
-
M. A. Pakhnin, T. A. Suslina, “Operator error estimates for homogenization of the elliptic Dirichlet problem in a bounded domain”, St. Petersburg Math. J., 24:6 (2013), 949–976
-
Suslina T.A., “Homogenization of the Dirichlet problem for elliptic systems: $L^2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476
-
Suslina T., “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J. Math. Anal., 45:6 (2013), 3453–3493
-
T. A. Suslina, “Homogenization of Elliptic Problems Depending on a Spectral Parameter”, Funct. Anal. Appl., 48:4 (2014), 309–313
-
T. A. Suslina, “Homogenization of elliptic operators with periodic coefficients depending on the spectral parameter”, St. Petersburg Math. J., 27:4 (2016), 651–708
-
Meshkova Yu.M. Suslina T.A., “Homogenization of initial boundary value problems for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775
-
T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, St. Petersburg Math. J., 29:2 (2018), 325–362
-
Gu Sh., “Convergence Rates of Neumann Problems For Stokes Systems”, J. Math. Anal. Appl., 457:1 (2018), 305–321
|
Number of views: |
This page: | 353 | Full text: | 100 | References: | 53 | First page: | 31 |
|