|
This article is cited in 10 scientific papers (total in 10 papers)
A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane
O. A. Krivosheevaa, A. S. Krivosheevb a Bashkir State University, Ufa
b Institute of Mathematics with Computing Centre of Ural Branch of the USSR Academy of Sciences
Abstract:
Let $D$ be a bounded convex domain of the complex plane. We study the problem of whether the fundamental principle holds for analytic function spaces on $D$ invariant with respect to the differentiation operator and admitting spectral synthesis. Earlier this problem was solved under a restriction on the multiplicities of the eigenvalues of the differentiation operator. In the present paper, we lift this restriction. Thus, we present a complete solution of the fundamental principle problem for arbitrary nontrivial closed invariant subspaces admitting spectral synthesis on arbitrary bounded convex domains.
Keywords:
analytic function, convex domain, invariant subspace, fundamental principle
DOI:
https://doi.org/10.4213/faa3086
Full text:
PDF file (209 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 2012, 46:4, 249–261
Bibliographic databases:
UDC:
517.537.7 Received: 24.12.2010
Citation:
O. A. Krivosheeva, A. S. Krivosheev, “A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane”, Funktsional. Anal. i Prilozhen., 46:4 (2012), 14–30; Funct. Anal. Appl., 46:4 (2012), 249–261
Citation in format AMSBIB
\Bibitem{KriKri12}
\by O.~A.~Krivosheeva, A.~S.~Krivosheev
\paper A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 4
\pages 14--30
\mathnet{http://mi.mathnet.ru/faa3086}
\crossref{https://doi.org/10.4213/faa3086}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3075093}
\zmath{https://zbmath.org/?q=an:06207369}
\elib{https://elibrary.ru/item.asp?id=20730668}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 4
\pages 249--261
\crossref{https://doi.org/10.1007/s10688-012-0033-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000312498400002}
\elib{https://elibrary.ru/item.asp?id=20487930}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871288903}
Linking options:
http://mi.mathnet.ru/eng/faa3086https://doi.org/10.4213/faa3086 http://mi.mathnet.ru/eng/faa/v46/i4/p14
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. S. Krivosheyev, O. A. Krivosheyeva, “A closedness of set of Dirichlet series sums”, Ufa Math. J., 5:3 (2013), 94–117
-
S. G. Merzlyakov, S. V. Popenov, “Interpolation by series of exponentials in $H(D)$ with real nodes”, Ufa Math. J., 7:1 (2015), 46–57
-
O. A. Krivosheeva, A. S. Krivosheev, “Singular points of the sum of a Dirichlet series on the convergence line”, Funct. Anal. Appl., 49:2 (2015), 122–134
-
A. S. Krivosheev, O. A. Krivosheeva, “Fundamental Principle and a Basis in Invariant Subspaces”, Math. Notes, 99:5 (2016), 685–696
-
A. I. Abdulnagimov, A. S. Krivosheyev, “Properly distributed subsets in complex plane”, St. Petersburg Math. J., 28:4 (2017), 433–464
-
O. A. Krivosheyeva, A. S. Krivosheyev, “A representation of functions from an invariant subspace with almost real spectrum”, St. Petersburg Math. J., 29:4 (2018), 603–641
-
O. A. Krivosheeva, “Basis in invariant subspace of analytical functions”, Ufa Math. J., 10:2 (2018), 58–77
-
S. G. Merzlyakov, S. V. Popenov, “Interpolyatsiya summami ryadov eksponent s pokazatelyami, sguschayuschimisya v odnom napravlenii”, Kompleksnyi analiz. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 162, VINITI RAN, M., 2019, 62–79
-
A. S. Krivosheev, O. A. Krivosheeva, “The distribution of singular points of the sum of a series of exponential monomials on the boundary of its domain of convergence”, Sb. Math., 211:1 (2020), 55–114
-
A. S. Krivosheev, O. A. Krivosheeva, “Invariant subspaces in half-plane”, Ufa Math. J., 12:3 (2020), 30–43
|
Number of views: |
This page: | 422 | Full text: | 130 | References: | 63 | First page: | 39 |
|