Funktsional'nyi Analiz i ego Prilozheniya
General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Funktsional. Anal. i Prilozhen.:

Personal entry:
Save password
Forgotten password?

Funktsional. Anal. i Prilozhen., 2013, Volume 47, Issue 1, Pages 47–61 (Mi faa3094)  

This article is cited in 10 scientific papers (total in 10 papers)

Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings

A. E. Mironovab, T. E. Panovcde

a N. N. Bogoljubov Laboratory of Geometric Methods in Mathematical Physics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
d A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
e Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow

Abstract: We study the topology of Hamiltonian-minimal Lagrangian submanifolds $N$ in $\mathbb{C}^m$ constructed from intersections of real quadrics in a work of the first author. This construction is linked via an embedding criterion to the well-known Delzant construction of Hamiltonian toric manifolds. We establish the following topological properties of $N$: every $N$ embeds as a submanifold in the corresponding moment-angle manifold $\mathcal Z$, and every $N$ is the total space of two different fibrations, one over the torus $T^{m-n}$ with fiber a real moment-angle manifold $\mathcal{R}$ and the other over a quotient of $\mathcal{R}$ by a finite group with fiber a torus. These properties are used to produce new examples of Hamiltonian-minimal Lagrangian submanifolds with quite complicated topology.

Keywords: moment-angle manifold, simplicial fan, simple polytope


Full text: PDF file (226 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2013, 47:1, 38–49

Bibliographic databases:

UDC: 514.76+515.16
Received: 22.04.2011

Citation: A. E. Mironov, T. E. Panov, “Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 47–61; Funct. Anal. Appl., 47:1 (2013), 38–49

Citation in format AMSBIB
\by A.~E.~Mironov, T.~E.~Panov
\paper Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 1
\pages 47--61
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 1
\pages 38--49

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. E. Mironov, T. E. Panov, “Hamiltonian-minimal Lagrangian submanifolds in toric varieties”, Russian Math. Surveys, 68:2 (2013), 392–394  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. T. E. Panov, “Geometric structures on moment-angle manifolds”, Russian Math. Surveys, 68:3 (2013), 503–568  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. S. López de Medrano, “Singularities of homogeneous quadratic mappings”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 108:1 (2014), 95–112  crossref  mathscinet  zmath  isi  scopus
    4. B. T. Saparbayeva, “On the Schrödinger operator connected with a family of Hamiltonian-minimal Lagrangian surfaces in $\mathbb CP^2$”, Siberian Math. J., 57:6 (2016), 1077–1081  mathnet  crossref  crossref  isi  elib
    5. Kotelskiy A., “Minimal and H-minimal submanifolds in toric geometry”, J. Symplectic Geom., 14:2 (2016), 431–448  crossref  mathscinet  zmath  isi  elib  scopus
    6. V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017), 199–256  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. N. A. Tyurin, “Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations”, Russian Math. Surveys, 72:3 (2017), 513–546  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. M. A. Ovcharenko, “On Hamiltonian-minimal isotropic homogeneous tori in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Siberian Math. J., 59:5 (2018), 931–937  mathnet  crossref  crossref  isi  elib
    9. M. A. Ovcharenko, “On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$”, Math. Notes, 108:1 (2020), 108–116  mathnet  crossref  crossref  mathscinet  isi  elib
    10. Kim J.H., “The Torsion of Real Toric Manifolds”, Proc. Amer. Math. Soc., 148:2 (2020), 901–911  crossref  mathscinet  zmath  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:549
    Full text:200
    First page:62

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021