RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2014, Volume 48, Issue 1, Pages 30–45 (Mi faa3133)  

This article is cited in 2 scientific papers (total in 2 papers)

Absence of Solitons with Sufficient Algebraic Localization for the Novikov–Veselov Equation at Nonzero Energy

A. V. Kazeykinaab

a M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b École Polytechnique, Centre de Mathématiques Appliquées

Abstract: It is shown that the Novikov–Veselov equation (an analogue of the KdV equation in dimension $2+1$) at positive and negative energies does not have solitons with space localization stronger than $O(|x|^{-3})$ as $|x|\to\infty$.

Keywords: traveling wave, localized soliton, Novikov–Veselov equation

DOI: https://doi.org/10.4213/faa3133

Full text: PDF file (216 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2014, 48:1, 24–35

Bibliographic databases:

Document Type: Article
UDC: 517.95
Received: 02.01.2012

Citation: A. V. Kazeykina, “Absence of Solitons with Sufficient Algebraic Localization for the Novikov–Veselov Equation at Nonzero Energy”, Funktsional. Anal. i Prilozhen., 48:1 (2014), 30–45; Funct. Anal. Appl., 48:1 (2014), 24–35

Citation in format AMSBIB
\Bibitem{Kaz14}
\by A.~V.~Kazeykina
\paper Absence of Solitons with Sufficient Algebraic Localization for the Novikov--Veselov Equation at Nonzero Energy
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 1
\pages 30--45
\mathnet{http://mi.mathnet.ru/faa3133}
\crossref{https://doi.org/10.4213/faa3133}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3204676}
\zmath{https://zbmath.org/?q=an:1308.35250}
\elib{http://elibrary.ru/item.asp?id=21826392}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 1
\pages 24--35
\crossref{https://doi.org/10.1007/s10688-014-0043-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000333086600003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896365391}


Linking options:
  • http://mi.mathnet.ru/eng/faa3133
  • https://doi.org/10.4213/faa3133
  • http://mi.mathnet.ru/eng/faa/v48/i1/p30

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Kazeykina, C. Muñoz, “Dispersive estimates for rational symbols and local well-posedness of the nonzero energy NV equation”, J. Funct. Anal., 270:5 (2016), 1744–1791  crossref  mathscinet  zmath  isi  elib  scopus
    2. A. Kazeykina, C. Munoz, “Dispersive estimates for rational symbols and local well-posedness of the nonzero energy NV equation. II”, J. Differ. Equ., 264:7 (2018), 4822–4888  crossref  mathscinet  zmath  isi  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:198
    Full text:30
    References:45
    First page:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019